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1 Introduction

The tool dfg2dfg allows the user to calculate some approximation of a clause set. It is
named dfg2dfg because it first reads clauses from an input file in DFG syntax [1]. It
then calculates some approximation of the clause set depending on command line options.
Finally it writes the approximated clause set in DFG syntax to a file.

2 Synopsis

dfg2dfg [-horn] [-monadic] [-linear] [-shallow] infile [outfile]

If neither infile nor outfile are given, dfg2dfg reads from standard input and writes to
standard output. If one file name is given, it reads from that file and writes the output to standard
output. If more than one file name is given, dfg2dfg reads from the first file and writes to the second.

The following sections describe the effects of the command line options. We are using a notation
similar to the notation of reduction rules [2]:

Θ ‖ Γ → ∆

Ψ1 ‖ Π1 → Λ1

...
Ψn ‖ Πn → Λn

Such a rule is applied to a clause set P by selecting a clause Θ ‖ Γ → ∆ from P and replacing it by
the clauses Ψi ‖ Πi → Λi. A transformation is calculated by recursively applying the corresponding
rule. The calculation stops when the rule isn’t applicable to any clause from the clause set.

3 Transforming a clause to a Horn clause
This transformation is enabled with the -horn command line option. The rule is

Θ ‖ Γ → E1, . . . , En

Θ ‖ Γ → E1

...
Θ ‖ Γ → En

where n ≥ 2 and E1, . . . , En are equality or non-equality literals.

4 Transformation to monadic literals
The following two transformations are enabled with the -monadic command line option. They
transform non-monadic non-equality literals into monadic literals. Note that equality literals are not
transformed.
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4.1 Transformation by term encoding
This transformation is enabled with the option -monadic, which is equivalent to -monadic=1. It
is described by the rule

Θ ‖ Γ → P (t1, . . . , tn), ∆

Θ ‖ Γ → T (p(t1, . . . , tn)), ∆

where p is a new function corresponding to the predicate P and T is a special predicate. All occur-
rences of P in the clause set are transformed into the same function p. Constraint and antecedent
literals are transformed in a similar way. This approximation is equivalence preserving.

4.2 Transformation by projection
This transformation is enabled with the option -monadic=2. It is described by the two rules

Θ ‖ P (t1, . . . , tn), Γ → ∆

Θ ‖ P1(t1), . . . , Pn(tn), Γ → ∆

Θ ‖ Γ → P (t1, . . . , tn), ∆

Θ ‖ Γ → P1(t1), ∆
...

Θ ‖ Γ → Pn(tn), ∆

where P1, . . . , Pn are some new predicates. All occurrences of P in the clause set are transformed
into the same predicates P1, . . . , Pn. Constraint literals are transformed similar to antecedent literals.

5 The linear approximation of a clause
A term is called linear, if it contains no repeated variables. This transformation generates the linear
approximation of a clause with monadic literals by replacing a variable x repeated within the succe-
dent by some new variable x′. Note that the transformation isn’t applicable to clauses containing
equality or non-monadic literals. This transformation is enabled with the -linear option. It is
described by the rule

Θ ‖ Γ → A[x]p, B[x]q , ∆

Θ′σ, Θ ‖ Γ′σ, Γ → A, B[q/x′], ∆

where (i) all literals are monadic, (ii) A 6= B or p 6= q, (iii) x′ is a new variable, (iv) σ = {x → x′},
(v) Θ′ = {L ∈ Θ | x ∈ vars(L)} and (vi) Γ′ = {L ∈ Γ | x ∈ vars(L)}.

6 The shallow approximation of a clause
We implemented three kinds of transformations with different requirements for the input clause and
different output clauses. The transformations are enabled with the -shallow option. Note that the
rules aren’t applicable to non-horn clauses.

6.1 The strict version
This transformation is enabled with the -shallow option, which is equivalent to -shallow=1. It
is described by the rule

Θ ‖ Γ → P (t[s]p1
)

S(x), Θ1 ‖ Γ1 → P (t[p1, . . . , pn/x])
Θ2 ‖ Γ2 → S(s)

where (i) all literals are monadic and all terms in Θ, Γ are variables, (ii) s is a complex term at non-
top position p in t, (iii) vars(s)∩ vars(P (t[p1, . . . , pn/c])) = ∅, where c is an arbitrary constant and
p1, . . . , pn are all positions of s in t, (iv) x is a new variable and S is a new predicate, (v) Θ1 and
Θ2 are a partition of Θ, with Θ2 = {L ∈ Θ | vars(L) ⊆ vars(s)} and (vi) Γ1 and Γ2 are a partition
of Γ, with Γ2 = {L ∈ Γ | vars(L) ⊆ vars(s)}. Note that all occurrences of s in t are replaced
simultaneously. This transformation is equivalence preserving with respect to the extension of P in
the minimal model.
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6.2 A more relaxed version
This version uses the same rule as the strict version, but condition (iii) is omitted. This results in an
upper approximation of P . This transformation is enabled with the -shallow=2 option.

6.3 The least restricted version
This transformation is enabled with the -shallow=3 option. It uses the rule

Θ ‖ Γ → P (t[s]p1
)

S(x), Θ ‖ Γ → P (t[p1, . . . , pn/x])
Θ ‖ Γ → S(s)

where (i) all literals are monadic, (ii) s is a complex term at non-top position p1 in t and p1, . . . , pn

refer to all positions of s in t and (iii) x is a new variable and S is a new predicate. Note that Θ and Γ
may contain non-variable terms and that s and t[p1, . . . , pn/c] (where c is an arbitrary constant) may
share variables. In contrast to the other two versions all negative literals are copied into all resulting
clauses. This transformation is an upper approximation of P .

7 Combining several transformations
It is possible to combine several of the transformations described above. However, transformations
from the sections 4 or 6 aren’t combinable with other transformations from the same section, because
they have the same goal. But for the other transformations the order of their application becomes
important if several transformations are combined. For example a transformation to monadic literals
should be applied before the linear transformation because the latter requires monadic literals. If
the transformations are applied in this order it might be possible to apply the second transformation
more often. dfg2dfg therefore applies the transformations in the same order as the order of their
description in this paper. That means transformations are applied in the following order:

1. transformation to horn clauses

2. transformation to monadic literals

3. linear transformation

4. shallow transformation.

The shallow transformation is applied last because it has the most preconditions.
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