The Theory of Spass Version 2.0

Christoph Weidenbach

Max-Planck-Institut fiir Informatik
Stuhlsatzenhausweg 85
66123 Saarbriicken, Germany.
weidenb@mpi-sb.mpg.de
http://www._mpi-sb.mpg.de/ weidenb

Contents
1 What This Article is (not) About 3
2 Foundations e 5
3 AFirstSimple Prover 9
4 Inference and Reduction Rules 17
4.1 Reduction Orderings o o o 18
4.2 SOMS . . e e e 20
43 Inference Rules 23
44 Reduction Rules e 27
45 Splitting 35
5 Global Design DeCiSions o o oo 36
51 Main-Loop 36
5.2 Proof Documentation/Checking 42
5.3 Data Structures and Algorithms 43
Bibliography 45
A SPASSVErsion 2.0 Options 48
Al Control e 48
A2 Inference RUlES 48
A3 ReductionRules e 49
B Pointersinto the SPASSSource Code 50
C Linksto Saturation Based Provers e 50

SPASS VERSION 2.0 3

1. What ThisArticleis (not) About

This article is about the design, the implementation and the use of SPASS Version
2.0 [Weidenbach, Afshordel, Brahm, Cohrs, Engel, Keen, Theobalt and Topic 1999],
a saturation-based automated theorem prover for first-order logic with equality. SPASS
is unique due to the combination of the superposition calculus with specific infer-
ence/reduction rules for sorts (types) and a splitting rule for case analysis motivated by
the 3-rule of analytic tableau and the case analysis employed in the Davis-Putnam proce-
dure [Davis and Putnam 1960]. Furthermore, SPASS provides a sophisticated clause normal
form translation [Nonnengart, Rock and Weidenbach 1998, Nonnengart and Weidenbach
2001]. This chapter is not about completeness/soundness proofs for saturation-based first-
order logic calculi. For this we refer to Bachmair and Ganzinger [2001], Nieuwenhuis and
Rubio [2001] and the corresponding references in this article. Nevertheless, this documen-
tation introduces a variety of inference/reduction rules that are implemented in SPAss and
that form a basis for various first-order calculi.

At the heart of SPASSs is a first-order calculus. It consists of inference rules that generate
new clauses and reduction rules that reduce the number of clauses or transform clauses into
simpler ones. In SPAss we introduced a great variety of clause set® based inference and
reduction rules that can be composed to various sound and complete first-order calculi.
The clause store data structure together with such a calculus are the basis for most of
today’s theorem proving systems, like Otter, E or Vampire(see Appendix C). SPASS goes
one step further by introducing a splitting rule that supports explicit case analysis. This
generalizes the standard clause store based approach to a clause store collection? approach
where different clause stores represent the different cases. Therefore, the splitting rule
introduces a second dimension in saturation-based automated theorem proving.

The third dimension we consider in SPASS are constraints, extra information attached
to a clause restricting its semantics and/or usage with respect to the calculus. Well-known
constraints are ordering constraints, forcing substituted terms to satisfy the attached or-
dering restrictions, basicness constraints, forbidding paramodulation inferences on certain
terms in the clause, or type constraints guaranteeing that instantiations for variables con-
form to the attached type of the variable. From an abstract implementation point of view
the handling of constraints is always the same. The information is attached to a clause,
it is maintained during the inference/reduction application process and it is exploited by
constraint specific algorithms/deduction mechanisms to restrict inferences/reductions or to
even eventually delete a clause. We implemented sort constraints, specific type constraints
for variables where the type (sort) theory is itself expressed by clauses.

A software project like SPASS is always a compromise between different goals like
maintainability, efficiency, flexibility, readability, short development time, modularity, etc.
For SpAss, the most important goals are maintainability, flexibility, readability and mod-
ularity of the design (code). This does not mean that SPASS is inefficient, but whenever
there is a conflict between efficiency and, e.g., a modular design, we prefer the latter. Best
evidence that SPASS really meets its design goals is the fact that its code is used by several

1From an implementation point of view we consider clause multisets, called clause stores.
2 clause store collection is a multiset of clause stores.

4 CHRISTOPH WEIDENBACH

research groups as a basis for code development and that the project has at the time of this
writing run successfully for eight years. We also view this prover as a tool(box), so even
for users that don’t want to spend effort in implementation work it offers great flexibility,
rich documentation and a number of indispensable extra tools like syntax translators or a
proof checker.

We believe that a sophisticated calculus, a “good theory”, has the highest impact on the
performance of a prover. Therefore, we won’t study the implementation of provers at the
level of data structures, object hierarchies or module design. Instead, we will discuss the
needs for an efficient implementation of the various inference/reduction rules and the im-
pacts that the top-level search algorithms have on an actual implementation. This together
with a specific design goal decision can then lead to a design concept for a real prover like
SPASS.

Heuristics are also not in focus of SPAss, although they can play an important réle
in automated theorem proving. For example, the heuristic that chooses the next clause
for inferences inside a typical “main loop” of a saturation based prover (see Table 1 on
page 11) can have a great impact on the success/non-success of a search attempt for a
proof. However, it is the nature of heuristics that they are sometimes useful and some-
times make things even worse. In the context of automated theorem proving, it is often
not predictable what will be the case as long as we don’t restrict our attention to spe-
cific problems (problem classes). Therefore again, the main focus of SPASS is on infer-
ence/simplification/reduction techniques. For these techniques we know, e.g., that they can
be composed to decision procedures for a variety of syntactically identifiable subclasses of
first-order logic [Bachmair, Ganzinger and Waldmann 1993, Nieuwenhuis 1996, Jacque-
mard, Meyer and Weidenbach 1998, Weidenbach 1999]. Our level of abstraction is often
lower compared to papers that solely are concerned with theory, because we want to em-
phasize on the implementation relevant aspects of inference/simplification/reduction tech-
niques. Hence, we always refrain from “more elegant” formulations in order to make the
consequences for an (efficient) implementation more explicit.

The design concepts introduced in SPASS and discussed here are not necessarily original
contributions of the author. For example, the combination of saturation and splitting is
original, but the use of indexing techniques [Graf 1996] is a widely used method. Many of
the design ideas introduced in SPASSs are “common knowledge™” among the developers of
first-order saturation based theorem provers and are regularly discussed among these. Thus
it is hard to say where the origin of some idea comes from and | refer to my colleagues
listed in the acknowledgments.

In this chapter | frequently use the notion in practice to argue for design decisions.
This refers to the problem domains we have been interested in so far: Problems resulting
from the analysis/verification of software [Fischer, Schumann and Snelting 1998], from
the area of automatic type inference [Fruhwirth, Shapiro, Vardi and Yardeni 1991, Chara-
tonik, McAllester, Niwinski, Podelski and Walukiewicz 1998], from the analysis of secu-
rity protocols [Heintze and Clarke 1999, Weidenbach 1999], planning problems [Kautz
and Selman 1996], modal logic problems [Hustadt and Schmidt 1997], and problems
from the TPTP problem library [Sutcliffe and Suttner 1998]. If we say that some tech-
nique/design/calculus is preferred over some other technique/design/calculus in practice,
this is always meant with respect to the above mentioned problem domains.

SPASS VERSION 2.0 5

SpAss is freely available from the SPASS homepage at
http://spass.mpi-sh.mpg.de/

After a section on notation and notions (Section 2), an introduction to major design aspects
of saturation-based provers (Section 3), we discuss the inference/reduction rules (Sec-
tion 4) of SpAss. For each rule we provide a formal definition and explain specific aspects
of its pragmatics and implementation. In Section 5 we evolve the global design of a prover
from all these rules. Finally, the appendix establishes links between all mentioned design
concepts, inference/reduction rules and the user interface of SPASS as well as its source
code.

2. Foundations

A multiset over a set A is a function M from A to the natural numbers. Intuitively, M (a)
specifies the number of occurrences of a in M. We say that a is an element of M if M (a) >
0. The union, intersection, and difference of multisets are defined by the identities (A, U
MQ)(.T) = Ml(I)+M2(T), (MlﬂMg)(a:) = min(Ml(x), MQ(I)), and (Ml\MQ)(I =
max (0, My (xz) — Ma(x)). We use a set-like notation to describe multisets.

A first-order language is constructed over a signature ¥ = (F, R), where F and R are
non-empty, disjoint, in general infinite sets of function and predicate symbols, respectively.
Every function or predicate symbol has some fixed arity. Function and predicate symbols
with arity one are called monadic. In addition to these sets that are specific for a first-order
language, we assume a further, infinite set X" of variable symbols disjoint from the symbols
in . Then the set of all terms 7 (F, X) is recursively defined by: (i) every function symbol
¢ € F with arity zero (a constant) is a term, (ii) every variable x € X is a term and
(iif) whenever ¢4, ...,t, are terms and f € F is a function symbol with arity n, then
f(t1,...,t,) is aterm. A term not containing a variable is a ground term. If ¢4,... ¢,
are terms and R € R is a predicate symbol with arity n, then R(¢4,...,t,) is an atom.
An atom or the negation of an atom is called a literal. Disjunctions of literals are clauses
where all variables are implicitly universally quantified. Clauses are often denoted by their
respective multisets of literals where we write multisets in usual set notation. A clause
consisting of exactly one literal is called a unit.

The set of free variables of an atom (term) ¢ denoted by vars(¢) is defined as follows:
vars(P(t1,...,tn)) = Usvars(t;) and vars(f(t1,...,tn)) = Usvars(t;), vars(x) =
{z}. The function naturally extends to literals, clauses and (multi)sets of terms (literals,
clauses).

A substitution o is a mapping from the set of variables to the set of terms such that
xo # x for only finitely many « € X. We define the domain of o to be dom(o) = {z |
xo # z} and the co-domain of o to be cdom(o) = {zo | zoc # z}. Hence, we can
denote a substitution o by the finite set {x1 — t1,...,2z, — t,} where z;c = t¢; and
dom(c) = {xy,...,z,}. A ground substitution o has no variable occurrences in its co-
domain, vars(cdom(o)) = 0. An injective substitution o where cdom(c) C X is called a
variable renaming. The application of substitutions to terms is given by f(t1,...,t,)0 =
fltio, ... tyo) forall f € F with arity n. We extend the application of substitutions to
literals and clauses as usual: P(t1,...,t,)oc = P(ti0,...,t,0) (accordingly for literals)

6 CHRISTOPH WEIDENBACH

and{Ly,...,L,}o ={L1o0,...,L,0}.

Given two terms (atoms) s, ¢, a substitution o is called a unifier for s and ¢ if so = to.
It is called a most general unifier (mgu) if for any other unifier 7 of s, ¢ there exists a
substitution A with o A = 7. A substitution ¢ is called a matcher from sto t if soc = ¢. The
notion of a mgu is extended to atoms, literals in the obvious way. We say that o is a unifier
for a sequence of terms (atoms, literals) ¢y, ...,t, if t;0 = tjo forall 1 < 4,5 < n and
o is a mgu if in addition for any other unifier 7 of ¢4, ..., ¢, there exists a substitution A
withol = 7.

A position is a word over the natural numbers. The set pos(f(t1,...,t,)) of positions
of agiventerm f(¢4,...,t,) is defined as follows: (i) the empty word ¢ is a position in any
term ¢ and ¢|.= ¢, (ii) if t|,= f(t1,...,tn), then i isapositionint foralli =1,... n,
and t|.,= t;. We write ¢[s], for ¢t|.= s. With t[r/s], where = € pos(t), we denote the
term (atom) obtained by replacing ¢| . by s at position 7 in ¢. The length of a position is
defined by length(e) = 0 and length(i.7) = 1 + length(7). The notion of a position can
be extended to atoms, literals and even formulae in the obvious way.

As an alternative to the already mentioned multiset notation of clauses, we also write
clauses in the form © ||T — A where © is a multiset of monadic atoms® and T, A are
multisets containing arbitrary atoms. Logically, the atoms in © and I" denote negative lit-
erals while the atoms in A denote the positive literals in the clause. The empty clause O
denotes L (falsity). The multiset © is called the sort constraint of © [T — A. A sort
constraint © is solved in a clause © ||I" — A if it does not contain non-variable terms and
vars(©) C vars(T' U A). If the clause is determined by the context, we simply say that a
sort constraint is solved. In case we are not interested in a separation of the negative literals
in a clause, we write clauses in the formI" — A. We often abbreviate disjoint set union with
sequencing, e.g., we write © || I' — A, R(t1,...,t,) for © | T — AU {R(t1,...,tn)}.
Equality atoms are written [&~ r and are mostly distinguished from non-equality atoms.
The latter are named A, B. In case we don’t want to distinguish these two different kinds
of atoms we use the letter ' (possibly indexed) to denote an arbitrary atom. Inferences and
reductions where equations are involved are applied with respect to the symmetry of ~.

A clause ©; ||T'; — A; subsumes aclause O || T2 — Ag if ©10 C ©,, 10 C Ty
and Ao C A, for some matcher o. The relation “is subsumed by” between clauses is a
quasi-ordering on clauses. Please recall that we consider clauses to be multisets. Hence,
e.g., the clause { P(z), P(y)} (also possibly written — P(z), P(y)) does not subsume the
clause { P(x)} (possibly written — P(x)).

The function size maps terms, atoms, literals to the number of symbols they are built
from, e.g., size(t) = |pos(t)|. In case of a literal, we don’t consider the negation symbol
for its size. The depth of a term, literal is the maximal length of a position in the term,
literal, e.qg., depth(t) = maz({length(w) | = € pos(t)}). The depth of a clause is the
maximal depth of its literals. The size of clause is the sum of its literal sizes.

For the definition of our inference/reduction rules we shall often need the notion of an
ordering to compare terms. This notion is then lifted to tuples, sets, clauses and (multi)sets
of clauses. A partial order is a reflexive, transitive and antisymmetric relation. A strict
order is a transitive and irreflexive relation. Every partial order = induces a strict order >

3These are atoms with a monadic predicate as their top symbol that form the sort constraint.

SPASS VERSION 2.0 7

byt >~ sifft = sandt # s. The lexicographic extension >='* on tuples of some strict
order > is defined by (t1,...,t,) ='* (s1,...,s,) ifforsome1 <i < nwehavet; ~ s;
and forall 1 < j < i itis the case that ¢; = s;. The multiset extension =™ is defined by
M =™ N if N # M and forall n € N\ M there exists an m € M \ N with m = n.
A reduction ordering - is a well-founded, transitive relation satisfying for all terms ¢, s,
I, positions p € pos(l) and substitutions o that whenever s > t then [[p/sc| > l[p/to].
For the purpose of this article, we are mainly interested in reduction orderings that are total
on ground terms, possibly up to some congruence on the ground terms. Any (reduction)
ordering = on terms (atoms) can be extended to clauses in the following way. We consider
clauses as multisets of occurrences of equations and atoms. The occurrence of an equation
s ~ t in the antecedent is identified with the multiset {{s,¢}}, the occurrence of an atom
A in the antecedent is identified with the multiset {{ A, T }}, the occurrence of an equation
in the succedent is identified with the multiset {{s}, {¢}} and the occurrence of an atom
in the succedent is identified with the multiset {{ A}, {T}}. We always assume that T is
the minimal constant with respect to . Now we overload > on literal occurrences to be
the twofold multiset extension of >~ on terms (atoms) and > on clauses to be the multiset
extension of > on literal occurrences. If - is well-founded (total) on terms (atoms), so are
the multiset extensions on literals and clauses.

Observe that an occurrence of an equation s = ¢ (an atom) in the antecedent is strictly
bigger than an occurrence of s & t in the succedent. The atoms in the sort constraint will
not be subject to ordering restrictions but will be processed by specific inference/reduction
rules.

An antecedent or succedent occurrence of an equation s ~ ¢ (an atom A) is maximal
in a clause © || A — II if there is no occurrence of an equation or atom in A — II that is
strictly greater than the occurrence s = ¢ (the atom A) with respect to . An antecedent
or succedent occurrence of an equation s = t is strictly maximal in a clause © || A — II if
there is no occurrence of an equation in A — II that is greater or equal than the occurrence
s = t with respectto . A clause © || A — I, s = ¢ (clause © || A — II, A) is reductive
for the equation s ~ ¢ (the atom A), if s ~ ¢ (the atom A) is a strictly maximal occurrence
of an equation (atom) and ¢ ¥ s.

For the specific sort constraint approach introduced here, monadic Horn theories are
of particular importance. Such theories provide a natural representation of sort/type infor-
mation (see Section 4.2). A Horn clause is a clause with at most one positive literal. A
monadic Horn theory is a set of Horn clauses where all occurring predicates are monadic.
A declaration is a clause Sy (1), ...,Sn(xy) — S(t) with {z1,...,z,} C vars(t). It
is called a term declaration if ¢ is not a variable and a subsort declaration otherwise. A
subsort declaration is called trivial if n = 0. A term ¢ is called shallow if ¢ is a variable or
is of the form f (x4, ..., x,) where the x; are not necessarily different variables. A term
t is called linear if every variable occurs at most once in ¢. It is called semi-linear if it
is a variable or of the form f(¢4,...,t,) such that every ¢; is semi-linear and whenever
vars(t;) Nwars(t;) # 0 we have t; = t; for all 7, j. A term declaration is called shallow
(linear, semi-linear) if ¢ is shallow (linear, semi-linear). Note that shallow term declara-
tions don’t include arbitrary ground terms. However, any ground term declaration can be
equivalently represented, with respect to the minimal model semantics, by finitely many
shallow term declarations. For example, the ground term declaration — S(f(a)) can be

8 CHRISTOPH WEIDENBACH

represented by the shallow declarations T'(z) — S(f(x)), — T(a). A sort theory is a
finite set of declarations. It is called shallow (linear, semi-linear) if all term declarations
are shallow (linear, semi-linear).

A clause store is a multiset of clauses. A clause store collection is a multiset of clause
stores. The inference and reduction rules discussed in this chapter operate on clauses oc-
curring in a clause store of a clause store collection. There are inference rules

z T[T = A

reduction rules
®1HF1—>A1 en”FnHAn

Uy |11 — Ay

R

Uy [I — Ay

and splitting rules.

© || I - A
Ui —A1q | Pigf|hie— Are

\Ijn,l H Hn,l - An71 \Ijm,Q H Hm,2 - Am,2

The clauses ©; || T; — A, are called the parent clauses or premises of the splitting (re-
duction, inference) rule and the clauses W, ;) || II;(;) — A;(,;) the conclusions. A rule is
applied to a clause store collection P by selecting a clause store N out of P such that the
premises of an inference (reduction, splitting) rule are contained in N. In this case, IV is
called the current clause store. If an inference is performed, the conclusion of the inference
is added to N. If a reduction is performed, the premises are replaced in N by the conclu-
sions. As a special case, if no conclusion is present, the premises are deleted from N. If a
splitting rule is applied, the current store IV is replaced in P by two stores

NAA{O[IT = A U{W1 [[I;1 — Aja [1<j<n}

NA{O| I = A U{¥ 2 [[Il;2 — Aj2 [1 < j <m}
One can think of more general splitting rules but the above schema is sufficient for a general
understanding of the implementation consequences caused by such a rule and is actually
implemented in SPASS (see Section 4.5). Semantically, clause stores represent conjunctions
of their clauses whilst clause store collections represent disjunctions of their contained
clause stores. So a clause store collection P represents a disjunction (clause stores) of
conjunctions (of universally quantified clauses) of disjunctions (of literals).

A clause store N is saturated with respect to a set of inference and reduction rules (no
splitting rules), if any conclusion of an inference rule application to NV yields a clause that
can eventually be deleted by a sequence of reduction rule applications. This definition of
saturation provides an operational point of view.

SPASS VERSION 2.0 9
3. A First Simple Prover

In this section, we discuss the implementation of a simple resolution based calculus. Al-
though the calculi implemented by SpAss are much more sophisticated than the simple
resolution calculus considered here, some important design decisions can already be ex-
plained on the basis of such a simple example. The resolution calculus consists of the
inference rules resolution, factoring and the reduction rules subsumption deletion and tau-
tology deletion

Resolution Factoring Right
T Fl,A—>A1 F2—>A2,B F—>A,A,B
(Fl, FQ — Al, AQ)O' (F — A,A)O’
Subsumption Deletion Factoring Left
R P1—>A1 F2—>A2 T P,A7B—>A
I — A (TA — A)o

Tautology Deletion
IA—AA
R))

where o is a most general unifier (mgu) of the atoms A and B for the rules resolution,
factoring and in order to apply subsumption, the clause I'y — A; must subsume the clause
FQ — AQ.

For the resolution rule to be complete, it is required that the parent clauses 'y, A — A;
and I's — As, B have no variables in common. Actual implementations of the rule satisfy
this requirement in different ways. They all have in common that variables are represented
by (natural) numbers, so this is our assumption for the rest of this paragraph. The first
solution explicitely renames the clauses such that they have no variables in common. The
second solution accepts clauses that share variables, but when running the unification al-
gorithm the variables are separated by adding an offset to the variables of one clause.* A
typical offset is the value of the maximal, with respect to number greater, variable of the
other clause. The third solution also accepts clauses that share variables and solves the
problem by employing two substitutions, one for each clause. This requires some modi-
fications to the standard unification algorithms, because the terms of the different atoms
need to be explicitely separated. This is the solution implemented in SPASS. In order to
test applicability of the resolution rule, it is sufficient to explicitely or implicitly rename
the variables of the considered atoms, not the overall clause.

For the factoring rule there is an extra variant for positive (Factoring Right) and negative
literals (Factoring Left). We could have presented both variants in one rule, by denot-
ing clauses as disjunctions of literals. However, our representation is closer to the imple-
mentation of the rule. All clause data structures used in well-known provers explicitely
separate positive from negative literals. The reason is efficiency and already becomes ob-
vious for factoring: Whenever we search for a partner literal for a positive literal it does

“4Please recall that we assume variables to be represented by naturals.

10 CHRISTOPH WEIDENBACH

not make sense to consider negative literals at all. Similar situations arise for other infer-
ence/reduction rules. Therefore, the decision in this article is always to distinguish positive
and negative literals when presenting inference/reduction rules.

Now let us compose the inference/reduction rules to an actual prover. The input of the
prover is a clause store containing clauses without equality and the output on termination
is a proof or a saturated clause store. The above resolution calculus is complete, so we also
want our search procedure to be complete in the sense that if resources don’t matter and
our procedure is called with an unsatisfiable clause store then it will eventually find a proof
(the empty clause). In order to achieve this goal, we have to guarantee that the considered
clause set is saturated in the limit. This includes that all inferences between clauses have
been performed. An easy way to remember which inferences have already been performed
is to split the input clause store in a set Wo of clauses (Worked off clauses) where all
inferences between clauses in this set already took place and a set Us of clauses (Usable
clauses) which still have to be considered for inferences. Then a main loop iteration of
the prover consists of selecting a clause from the Us set, moving it to the Wo set and
then adding all inferences between the selected clause and the clauses in Wo to the Us
set. If the selection is fair, i.e., no clause stays arbitrarily long in the Us set without being
selected, this results in a complete procedure. It remains to build reductions into this loop.
The idea for this loop is due to the Otter theorem prover and its predecessors [McCune and
Wos 1997].

The reduction rules tautology deletion and subsumption deletion decrease the number of
clauses in the clause store while the inference rules increase the number of clauses. Hence,
exhaustive application of the reduction rules terminates and produces smaller clause stores.
In practice, small clause sets are preferred over large ones, hence reductions are preferred
over inferences. This consideration together with the idea of the main-loop introduced
above leads to ResolutionProver! depicted in Table 1. Note that subsumption and tau-
tology deletion are independent in the sense that once all tautologies have been removed,
subsumption does not generate new tautologies. Analyzing such dependencies between
reductions is one key for an efficient implementation.

For the description of theorem proving procedures we use the following abbreviations:
fac(C) is the set of all factoring inference conclusions (left and right) from the clause C,
res(C, D) is the set of all resolution inference conclusions between two clauses C and D,
taut(N) is the set NV after exhaustive application of tautology deletion and sub(N, M)
is the set of all clauses from N that are not subsumed by a clause in M. We overload
sub for one argument, where sub(N) denotes the set N after exhaustive application of
subsumption deletion to the clauses in N. We overload res by defining res(C, N) to be
the set of all resolution inferences between the clause C and a clause in N. The function
choose selects and removes a clause from its argument clause store and returns the selected
clause as well as the updated argument clause store.

As already motivated, the procedure ResolutionProverl operates on two clause stores:
Wo and Us. The store Wo holds all clauses that have already been selected for infer-
ences, while the store Us contains all candidate clauses to generate inferences. The prover
ResolutionProverl is called with a finite clause store NV and tests those for unsatisfiabil-
ity. Lines 2 and 3 initialize the sets Wo and Us. Note that Us is not initialized with IV, but
its completely inter-reduced equivalent. This step is called input reduction. The search for

SPASS VERSION 2.0 11

1 ResolutionProverl (N)

2 Wo:=10;

3 Us = taut(sub(N));

4 While (Us#0and O ¢ Us) {

5 (Given, Us):= choose(Us);

6 Wo = Wo U {Given};

7 New = res(Given, Wo) U fac(Given);

8 New = taut(sub(New));

9 New = sub(sub(New, Wo), Us);
10 Wo := sub(Wo, New);
11 Us = sub(Us, New) U New;
12)
13 If (Us = () then print “Completion Found™;
14 If (O € Us) then print “Proof Found”;

Table 1: A First Resolution Based Prover

the empty clause (a saturation) is implemented by the lines 4-12. The while-loop starting
at line 4 terminates if the empty clause is found or the set Us is empty. We will argue
below that this implies that the set Wo is saturated. If Us is not empty and the body of the
while-loop is entered, the function choose selects at line 5 a clause out of the usable set.
The function is fair, if no clause stays in Us for an infinite number of iterations through the
while loop. A widely used, fair implementation (heuristic) of choose is to select a lightest
clause that is a clause of smallest size. This selection function is fair, because there are only
finitely many different clauses with respect to subsumption having less than & symbols, for
any constant k.5 Many refinements of the choose function are possible: using different
weights for variable and signature symbols, preferring clauses with more/fewer variables,
preferring clauses that contain certain atoms/term structures or considering in addition the
depth of a clause in the search space. The depth of a clause in the search space is zero for
all input clauses and every conclusion of an inference has the maximal depth of their par-
ent clauses plus one. Many provers use a combination of weight and depth selection, e.g.,
choosing four times clauses by minimal weight and every fifth time by minimal depth. This
combination again goes back to Otter where the ratio can be controlled by the pick-given
ratio parameter. The parameter is also available in SPASS.

Then the clause Given is selected, removed from Us and added to Wo (lines 5, 6).
Next (line 7) all resolution inference conclusions between Given and Wo and all factoring

5Note that since the input set NV is finite, the relevant signature is finite, too.

12 CHRISTOPH WEIDENBACH

inference conclusions from Given are stored in New. Note that since Given is already
contained in Wo these inferences include self resolution inferences. The clauses generated
so far are called derived clauses. The lines 8-11 are devoted to reduction. First, all tautolo-
gies and subsumed clauses are removed from New. Then all clauses that are subsumed by
aclause in Wo or Us are deleted from New. This operation is called forward subsumption.
Clauses remaining in New are then used for backward subsumption, the subsumption of
clauses in the sets Wo and Us by clauses from New. Finally, the clauses from New are
added to Us. These clauses are usually called kept clauses.

There are two invariants that hold each time line 4 is executed:

¢ Any resolution inference conclusion from two clauses in Wo (factoring inference con-

clusion from a clause in Wo) is either contained in Wo, Us or is subsumed by a clause
in Wo, Us or is a tautology.

e The sets Wo and Us are completely inter-reduced:

Wo U Us = taut(Wo U Us) and

Wo U Us = sub(Wo U Us).
A consequence of these invariants to hold is that if the procedure stops then the set Wo
is saturated. Furthermore, if the function choose is fair, then the ResolutionProverl is
complete.

In case that for the set V a satisfiable subset N’ is known, e.g., if the clauses represent
a proof attempt of a conjecture with respect to some theory that is known to be satisfiable,
we could also initialize the sets by Wo := N’ and Us := (N \ N’), obtaining the so
called set of support (SOS) strategy [Wos, Robinson and Carson 1965]. The SOS strategy
preserves completeness.

Many other saturation based provers (e.g., Otter, SPASS, Waldmeister, see Ap-
pendix C) have a search algorithm based on two sets of clauses.® SPAss implements
ResolutionProver! on a Unix system by the shell invocation

SPASS -Auto=0 -ISRe -1SFc -RTaut -RFSub -RBSub <file>
where the option —Auto=0 turns off the automatic mode of SpASs. In this mode SPASS
decides on the basis of the input problem the set of inference and reduction rules. If the
automatic mode is turned off, no inference/reduction rules are activated. All options start-
ing with an 1 (de)activate inference rules, options starting with an R (de)activate reduction
rules. So the above call to SPASS activates the inference rules standard resolution (- ISRe),
standard factoring (- I SFc) and the reduction rules tautology deletion (-RTaut), forward
subsumption(-RFSub) and backward subsumption (-RBSub). An inference/reduction
rule option is activated by setting it to 1 (the default) and deactivated by setting it to 0.
For further details consider Appendix A.

For example, we simulate a run of ResolutionProver! on the clauses

L — P(f(a))
2: P(f(z)) — P(x)
3t P(f(a)),P(f(z))—
shown in Table 2. For each while-loop iteration, we show the content of the Wo and Us
set at line 4, the selected Given clause and the content of New before execution of line 8.

SHowever, they use different names for the sets. So don’t be confused.

SPASS VERSION 2.0

Iteration 1
Wo=10 Us=1{1,2,3}
Given= 1: — P(f(a))
New= 0
Iteration 2 1
Wo={1} Us={2,3}

Given= 2: P(f(z)) — P(x)
New= {4:[Res:1.1,2.1] — P(a),
5:[Res:2.1,2.2] P(f(f(x))) — P(z)}

Iteration 3 1
Wo ={1,2} Us={3,4,5}
Given= 4. — P(a)
New= 0
Iteration 4 |
Wo=1{1,2,4} Us={3,5}
Given= 3: P(f(a)),P(f(z)) —

New= { 6:[Res:1.1,3.1] P(f(z)) —,
7:[Res:1.1,3.2] P(f(a)) —,
8:[Res:223.1] P(f(f(a))), P(f(x)) —,
9:[Res:2.2,3.2] P(f(a)), P(f(f(x))) —,

10:[Fac:3.1,3.2] P(f(a)) —}
Iteration 5 1
Wo={1,4} Us={6}

Given= 6. P(f(x)) —
New= {11:[Res:1.1,6.1] 0O}

Table 2: A Run of ResolutionProverl

13

Newly generated clauses are printed in full detail while we refer to a clause in the sets Wo

and Us only by its unique clause number. The function choose selects lightest clauses.

Every box in Table 2 represents one while-loop iteration. For newly generated clauses
we also show the applied inference rule and parent clauses/literals. Here Res indicates a
resolution inference, Fac a factoring inference and the notion n.m refers to literal m of
clause n. So, for example, clause 7 is generated by a resolution inference between the first
literal of clause 1 and the second literal of clause 3 where literals are counted from left
to right. Iteration 4 shows already some common phenomena of saturation based calculi.
First, these calculi are typically redundant in the sense that the very same clause can be

14 CHRISTOPH WEIDENBACH

generated in various, different ways. For example, clause 7 and clause 10 are logically
identical, although the former is generated by a resolution inference while the latter is
the result of a factoring application. As a consequence, subsumption is indispensable for
saturation based calculi to cut down the number of kept clauses. The situation gets even
more dramatic in the context of equality, where a single loop iteration can already cause
an explosion in the number of newly generated clauses. This will be discussed in more
detail in Section 4. Coming back to our run, note that in the reduction part of while-loop
iteration 4, the clauses 2, 3, 5, 7-10 are all subsumed by clause 6. Second, even for this
simple example, it happened that the selection of the Given clause is not always unique
when choosing lightest clauses. During iteration 4, the clauses 3 and 5 have both size 6, but
choosing clause 5 instead of clause 3 would have caused an additional while loop iteration
before the empty clause is derived. Of course, the function choose could be refined and
we will in fact discuss such refinements, but in practice it happens (and must happen)
frequently that several clauses have the same precedence with respect to choose. Then
selecting the right clause (by accident) can enable a prover to find a proof where it gets
lost in the search space by selecting a different one. This phenomenon is common to all
theorem provers and can be observed at the yearly CADE CASC system competitions (e.g.,
see [Sutcliffe and Suttner 1999]), where the performance of provers varies depending on
the ordering of the input problem clauses.

If ResolutionProverl is ran on non-trivial examples, the Us set rapidly gets much larger
than the Wo set. It easily happens that after some iterations the size increases by a factor of
1000. In particular, it is common in the context of problems containing equality. Therefore,
at least with respect to the number of clauses that have to be considered, the subsumption
tests with respect to the Us set are the most expensive parts of the algorithm. Typical
runs of ResolutionProver1 show a behavior where more than 95% of the overall time is
spent for subsumption checks. This motivates the design of ResolutionProver2 shown in
Table 3.

ResolutionProver2(N') does not perform any subsumption tests with respect to the Us
set and back subsumption is only performed with respect to the actually selected given
clause. The two invariants for ResolutionProver2 are

e Any resolution inference conclusion from two clauses in Wo (factoring inference con-
clusion from a clause in Wo) is either contained in Wo, Us or is subsumed by a clause
in Wo or is a tautology.

e The set Wo is completely inter-reduced:
Wo = taut(Wo) and
Wo = sub(Wo).
These two invariants are still strong enough to guarantee that if the while loop terminates,
the Wo set is saturated. Note that although New is always reduced with respect to Wo at
line 11, the set Us is in general not reduced with respectto Wo, i.e., Us # sub(Us, Wo).
If we assume that choose selects light clauses there is a further motivation to leave out
subsumption tests with respect to the Us set. If a clause C' subsumes a clause D, then
size(C) < size(D). So small clauses have a higher probability to subsume other clauses
than larger clauses. Therefore, because we always select the lightest given clause, the hope
is that not too many clauses that could have been subsumed stay in the Us set. In prac-

SPASS VERSION 2.0

1 ResolutionProver2(N)

2 Wo =

3 Us = taut(sub(N));

4 While (Us#0and 0 ¢ Us) {

5 (Given, Us):= choose(Us);

6 if (sub({Given}, Wo) #0) {

7 Wo = sub(Wo, { Given});

8 Wo = Wo U{Given};

9 New := res(Given, Wo) U fac(Given);
10 New = taut(sub(New));
11 New = sub(New, Wo);
12 Us = Us U New;

13}

14)

15 If (Us = 0) then print “Completion Found™;
16 If (O € Us) then print “Proof Found”;

Table 3: A Second Resolution Based Prover

15

16 CHRISTOPH WEIDENBACH

tice, ResolutionProver2 saves about 10% of the time spent for reductions (subsumption)
compared to ResolutionProverl. For the simple resolution calculus we studied so far, Res-
olutionProver2 is mostly in favor of ResolutionProverl when run in practice. As soon
as our reduction techniques include rules that produce lighter clauses (see Section 4) the
choice is no longer obvious in general. There are examples where an overall interreduction
easily yields the empty clause, but for a ResolutionProver2 style algorithm sophisticated
heuristics are needed to still find a proof.

Running ResolutionProver2 on the example clause store, the result is similar to the run
of ResolutionProverl (Table 2). The first three iterations are identical, but at iteration 4, the
clauses 2, 3, 5, 7-10 are not subsumed but stay in their respective sets. Then, in iteration 5,
where clause 6 is selected as given clause, the clauses 2, 3 are removed from the Wo set
(line 7 of ResolutionProver2, Table 3) and the empty clause is derived.

SPASS implements ResolutionProver2 by the call

SPASS -Auto=0 -FullRed=0 -1SRe -1SFc -RTaut -RFSub -RBSub
<file>

where the option —Ful IRed=0 deactivates reduction with respect to the Us set and mod-
ifies the algorithm accordingly. For further details consider Appendix A.

There are many possible alternatives, variations, refinements for the two loops suggested
here. Let us discuss some aspects. First, concerning factoring, any clause store can be
finitely saturated with respect to factoring, since a factor has strictly fewer literals than
its parent. So one could get the idea to keep the Wo set always saturated with respect
to factoring. The disadvantage of this approach is that the number of factors that can be
generated out of one clause grows worst case exponentially in the number of literals. The
prover Bliksem allows a user to prefer factors (see Appendix C).

Second, concerning resolution and the selection of the given clause, we could also a
priori built for each loop iteration all one step resolvents between the clauses in the Us set
and between one parent from the Us set and one parent from the Wo set. Then instead of
picking a Given clause, we pick one resolvent, use it for (back and/or forward) reduction
and finally add it to the TWo set. This approach results in a more fine grained develop-
ment of the search space. This design for a proof search is closely related to clause graph
resolution [Eisinger 1991].

Third, on the implementation side, if we once decide to implement ResolutionProver2,
the only information we need for the clauses in Us are their properties with respect to
the choose function and how these clauses can be generated. For all clauses except the
input clauses it suffices to store references for the parents and the used inference. This
way it is possible to store all Us clauses in a compact way. In practice constant space
suffices for any clause. This dramatically decreases memory consumption and results in
an extra speed up. The necessary regeneration of clauses once they are selected, plays
no role concerning performance. The Waldmeister prover follows this approach. Fourth,
another way to keep the Us set small is to throw away clauses with respect to certain
weight or complexity restrictions on the newly generated clauses. Either these clauses are
just thrown away resulting in an incomplete procedure, this is supported by Otter, SPASS
and Vampire (see Appendix C), or the restrictions can be set in a way such that only finitely
many clauses can pass the restriction test and once the search results in such a saturated

SPASS VERSION 2.0 17

set, the restrictions are adjusted and the search is restarted. This design is supported by
Bliksem, SpAss and Fiesta. In SPASS the resource restriction strategy is controlled by the
flags BoundMode specifying the resource type where 0 means no resource restriction, 1
means clause size restriction and 2 means clause depth restriction, the flag BoundStart
specifying the initial start value to restrict the selected resource type and BoundLoops
determines how often a saturation caused by resource restrictions is restarted with adjusted
restrictions. So the call

SPASS -BoundMode=1 -BoundStart=5 -BoundLoops=3 <file>

causes SPASS to throw away all clauses that have a weight greater 5. If this leads to an
empty Us set without finding the empty clause, the bound is increased to the smallest
size greater 5 that caused a clause to be deleted. This process is repeated at most 3 times,
then any weight restrictions are discarded. Such an exploration of the search space can be
particularly useful in the context of unit equational problems.

4. Inference and Reduction Rules

In this section we describe a variety of inference/reduction rules. For every rule, we start
with a formal definition of the rule and then, if necessary, discuss aspects of its pragmat-
ics, complexity, interaction with other rules or design concepts and its implementation and
usage. Some rules are stated in a general, possibly non-effective form (e.g., see the conflict
rule, Definition 4.19). In this case we also discuss effective instantiations. The rules don’t
form a particular calculus, instead several well-known calculi can be implemented by form-
ing appropriate groups of rules. An example is the simple resolution calculus considered
in Section 3.

Many reduction rules can be simulated by one or several inference rule applications fol-
lowed by a (trivial) subsumption step. As long as the inference rule set is complete this
observation is not too surprising, since we require all our rules to be sound. So one might
think that the sophisticated reduction machinery introduced in this section is not really nec-
essary but just a waste of resources when implemented. However, it is just the other way
round. Reduction rules always lead to “simpler” clause stores by deleting some clause or
by replacing a clause by a “simpler” one. This often ensures the termination of exhaustive
application of (groups of) such rules and enables application of these rules to all clauses.
Therefore, in the context of an implementation, reduction rules cannot be simulated by in-
ference rule applications since those don’t terminate when applied exhaustively. Inference
rules are only applied to some selected Given clause. Reduction rules should be viewed as
restricted inference rules that eventually lead to simpler clause stores and help to explore
the “easy” parts of the search space (problem). They replace search space exploration by
(efficient) calculation. In fact, some of the reduction rules introduced in this section are
motivated by decidability results for various first-order logic fragments.

18 CHRISTOPH WEIDENBACH

4.1. Reduction Orderings

For many of the inference/reduction rules defined in the sequel, maximality restrictions
on literals, terms play an important role. The two most popular orderings are the Knuth-
Bendix ordering (KBO) [Knuth and Bendix 1970, Peterson 1983] and the recursive path
ordering with status (RPOS) [Dershowitz 1982]. For a broad introduction to orderings,
consider the article by Dershowitz [1987] and the more recent book by Baader and Nipkow
[1998]. The definitions below differ in some details from other definitions found in the
literature, but reflect implementation experience.

Nearly all orderings used in todays provers are variations of the KBO and the RPOS. In
particular, weaker versions the orderings are often used. For example, purely weight based
orderings or variants of the RPOS without recursive consideration of subterms. These
weaker versions have the advantage of cheaper computation and when used to restrict
inference rules (see Section 4.3) of a broader exploration of the search space. This can be
useful for the search of short proofs. We describe KBO and RPOS exactly the way they are
implemented in SPASS.

Let > be a strict order on the set of signature symbols (functions, predicates), called
a precedence. Let weight be a mapping from the set of sighature symbols into the non-
negative integers. We call a weight function admissible for some precedence if for every
unary function symbol f with weight(f) = 0, the function f is maximal in the precedence,
i.e., f > g for all other function symbols g. The function weight is extended to a weight
function for terms (atoms) as follows: (i) if ¢ is a variable, then weight(t) = k, where k
is the minimum weight of any constant and (ii) if t = f(¢1,...,t,), then weight(t) =
weight(f) + >, weight(t;). Let occ be a function returning the number of occurrences
occ(s,t) of aterm s in a term ¢, defined by occ(s,t) = |{p € pos(t) | t|,= s}| and let
status be a mapping from the signature symbols to the set {left, right, mul}.

4.1. DEFINITION (KBO). If ¢, s are terms, then ¢ >y, s if occ(x,t) > occ(z, s) for every
variable = € (vars(t) Uvars(s)) and
(1) weight(t) > weight(s) or
(2) weight(t) = weight(s) andt = f(t1,...,tx)and s = g(s1,...,s) and
(2a) f > g in the precedence or
(2b) f =g and
(2b1) status(f) = left and (t1,...,tx) =1 (s1,...,s)0r
(2b2) status(f) = right and (tg, tx—1,...,t1) >—ffb“f) (S1,81—1,---551)

Note that in case (2b) the condition f = g implies k£ = [. Multiset status for function
symbols can also be defined but does not pay off in practice for the KBO. If the weight
function is admissible for the precedence, then the KBO is a reduction ordering [Baader
and Nipkow 1998]. If the precedence > is total, then the KBO is total on ground terms
(atoms). For some finite set of signature symbols’ and two terms s, ¢ with s =, t, there
are finitely many terms s’ with s =50 " =kpo .

The motivation to consider unary function symbols with weight zero comes in particu-
lar from group theory. The standard group axioms can be turned into a convergent system

For an infinite set the condition does obviously not hold.

SPASS VERSION 2.0 19

[Baader and Nipkow 1998] using the KBO with precedence i > f > e and weights
weight (i) = 0, weight(f) = weight(e) = 1 where ¢ is the inverse function, f denotes
group multiplication and e represents the neutral element. During the saturation (comple-
tion) process it is crucial to orient the derived equation i(f(x,y)) ~ f(i(y),i(x)) from
left to right, for otherwise the saturation process won’t terminate. The only way to achieve
i(f(z,y)) = f(i(y),i(z)) is to assign weight 0 to the function symbol :.

Implementation of the KBO can be done straightforward from the definition. For the
RPOS we also assume > to be a strict order (precedence) on the set of signature symbols
(functions, predicates).

4.2. DEFINITION (RPOS). Ift, s are terms, then t > 05 s if
(1) s € vars(t) and t # s or
2 t= f(t1,...,t)and s = g(s1,...,s)and
(2a) t; = ypos s forsome 1 <4 < kor
(2b) f>gandt >, s;foralll <j <lor
(2¢) f =gand
(2c1) status(f) = left and (¢4, ..., tx) >lrifos (s1,...,5) and
t >—rpos s; Torall1 < j <lor
(2c2) status(f) = right and (tk, te—1, ..., t1) =0 (s1, 8121, .., 1) and
t >rpos sj forall 1 <j <lor
(2¢3) status(f) = mul and {t1,... ,tx} =0 {s1,..., 5}

The RPOS is a reduction ordering as well and if the precedence > is total RPOS is
also total on ground terms (atoms), up to the congruence relation =,,,,; generated from
the symbols with multiset status. If f is a function symbol with status(f) = mul
then f(t1,. .- tn) =mut F(S1,--0,80) if {t1,.. ., tn} =" Ls1,...,5,}, for exam-
ple f(a, f(a,b)) =mw f(f(b,a),a). Even for some finite set of signature symbols
and two terms s, ¢ with s >, t, there are in general infinitely many terms s’ with
S >'7";170s 5/ >'7";170s t.

The RPOS can for example be used to orient distributivity the “right way”. If f > g,
then the equation f(x,g¢(y,2)) ~ g(f(z,y), f(z,2)) is oriented by RPOS from left to
right. Note that KBO cannot orient the equation from left to right, because the right hand
side has one more occurrence of the variable z.

Given a specific theorem proving problem, the relevant signature is finite and fixed. In
this case it can be useful to further refine an ordering by defining ¢t = s if to = so for
all ground substitutions o where (vars(t) U vars(s)) € dom(o). Following this idea,
RPOS can be instantiated to an ordering that totally orders all atoms by predicate symbols
and only in second place considers possible argument terms, independently from variable
occurrences! This can be achieved by making all (some) predicate symbols larger in the
precedence than all function symbols. For example, with respect to the above suggested
lifting and a signature with predicate symbols P, @ and function symbols f, a where
P > Q > f > aitholds that P(z) >.p0s Q(f(x,y)) because P is greater in the
precedence than @, f, a and hence any ground term that can be substituted for = or v.
Predicates can be declared to be superior over function symbols, by a declaration

set_DomPred(< predicate sequence >) .

20 CHRISTOPH WEIDENBACH

in the SPASS settings section of an input file [Hahnle, Kerber and Weidenbach 1996]. Such
an application of RPOS can, e.g., be useful to make literals built from newly introduced
formula renaming predicates minimal. This prevents the generation of the standard CNF
via ordered resolution [Nonnengart and Weidenbach 2001].

Straightforward recursive implementation of RPOS following the definition results in an
algorithm with worst case exponential complexity. Using a dynamic programming idea, a
polynomial algorithm can be devised [Snyder 1993]. However, in practice, it turns out that
the straightforward implementation is superior to the dynamic programming approach, if
the following filter is added. Whenever we test ¢ > .,,s s for two terms s, ¢, we first check
vars(s) C vars(t).

4.2. Sorts

The motivation for sorts comes from programming languages, where one likes to catch
as many errors at compile time as possible. For example, if the addition function is only
defined for number sorts (types) but used in a program with a list type, the compiler can
complain about such a statement by exploiting the sort information. Of course, the sort
checking must be tractable, i.e., it should at least be decidable and/or show acceptable
performance for real world programs. A prerequisite for the sort information to be checked
at compile time, is that the sort information is separated from the program and it is typically
included in an extra declaration part.

Here we generalize this situation. The sort information is not separated from the first-
order problem as, e.g., done in algebraic specification languages, but part of the problem
itself. Therefore, we cannot check sort information at compile time, after or while reading
the problem. Instead the sort information is used at run time, during proof search, to detect
ill-sorted and therefore redundant clauses and to simplify the sort information contained in
the clauses by specific algorithms. These algorithms exploit the sort information in a much
more efficient way than their standard first-order reduction rule counterparts.

Sorts are activated in SPASS by the -Sorts option. If SPASS is called with option
-Sorts=1 all negative monadic literals with a variable argument are considered for the
initial sort constraints, whereas -Sorts=2 causes SPASS to consider all negative monadic
literals for the initial sort constraints. The latter choice can affect completeness, because of
the basicness restriction on the sort constraint.

4.3. DEFINITION (Sort Constraint Resolution). The inference

7 ©1,..0, 0| Tr T T = Ay, An Ao

where (i) o is the simultaneous mgu of ¢, s1, .. ., s,,, (ii) t is a non-variable term and there
is no further literal S(¢) € U, (iii) all ©; are solved, (iv) all T;(s;)o are reductive for
(©;|T; — A, T;(s;))o is asort constraint resolution inference.

Sort constraint resolution is a hyper resolution (see Definition 4.14) like inference rule. It
simulates the rule weakening of sorted unification [Weidenbach 1998] on the relativization

SPASS VERSION 2.0 21

of sorted variables represented by the sort constraint. Sort constraint resolution is activated
by the — 1SoR option.

4.4. DEFINITION (Empty Sort). The inference

(@1,...,@n,\If||P1,...,Fn,P—>Al,...,An,A)O'

7z

where (i) o is the simultaneous mgu of s1,..., sy, (ii) ¢ € vars(I' U A U ¥) and no
non-variable term occurs in U, (iii) all ©; are solved, (iv) all T;(s;)o are reductive for
(©;|T; — A, T;(s;))o is an empty sort inference.

Empty sort is similar to sort resolution and, in fact, in some of our papers (e.g., Jacque-
mard et al. [1998]) we unified both rules into one inference rule. For the purpose of the
decidability results presented in these papers this is appropriate. It makes sense to distin-
guish these rules, because the eventual success of empty sort, i.e., we are able to show that
some sort is non-empty, does not rely on the particular sort constraint, but only on the set
of monadic (sort) symbols that share their variable argument. We check emptiness of an
intersection of sort symbols. Since there are only finitely many different such sorts with
respect to some finite clause store, it may make sense to store constraints that resulted in
successful non-emptiness proofs and to reuse them. One application domain are the proofs
required in the context of static soft typing (Definition 4.6). Empty sort is activated by the
- 1EmS option.

4.5. DEFINITION (Sort Simplification). Let N be the current clause store and N’ C N be
exactly the set of all declarations in V. The reduction

St),0]T — A
oT— A

R

where N’ |= Vzq, ..., 2, [S1(21), ..., S0 (zn) D S(t)] and {Si(x1),...,Sn(zn)} € O
is the maximal subset of © for which {x1,...,z,} C vars(t) is called sort simplification.

Given an arbitrary sort theory N’, the relation
N EVzi, ...z, [S1(z1),. .., Sp(xn) D S(H)]

is always decidable in polynomial time. In terms of sorted unification the problem means
deciding well-sortedness [Weidenbach 1998]. A bottom-up algorithm based on dynamic
programming yields the polynomial complexity whereas a simple top down approach re-
sults in an exponential procedure. The latter procedure would correspond to solve the prob-
lem with ordered resolution and an SOS strategy. The former algorithm is implemented in
SPASs. Sort simplification is activated by the ~-RSSi option.

Sort simplification is one important reason why it makes sense to treat particular oc-
currences of monadic predicates in a special way. Sort simplification cannot be simulated
via other standard reduction techniques like matching replacement resolution (see Defi-
nition 4.20) and cannot be extended to non-monadic predicates. For example, for binary

22 CHRISTOPH WEIDENBACH

relations, the undecidable problem whether two ground terms are contained in a transitive
binary relation generated by some positive unit clauses [Schmidt-Schauf3 1988] can be re-
duced to deciding applicability of an extended sort simplification rule for binary relations.
So without further restrictions, sort simplification cannot be effectively used for other n-ary
relations.

4.6. DEFINITION (Static Soft Typing). Let N be the current clause store over some fixed
signature X and M be a sort theory such that N |= S(¢) implies M = S(t) for any ground
monadic atom S(t) over X where .S occurs in some sort constraint in V. The reduction

o Olr—A

where M b~ Jxq, ..., 2, O with vars(0©) = {x1,...,z,} is called static soft typing.

The above definition of static soft typing is not effective. The problem A |}~
Jx1,...,2, © is not decidable for arbitrary sort theories M and sort constraints ©. It
includes the general problem of sorted unification [Weidenbach 1998] that is well-known
to be undecidable, in general. Furthermore, it is not obvious how the sort theory M can be
constructed out of NV such that it meets the requirements of Definition 4.6. A solution to
all these problems is the following. First, all clauses that contain positive monadic atoms
are safely approximated and restricted to the sort information they contain:

O T — A, Si(t1),...,Snlts)
O || — S1(t1)

R

en H - Sn (tn)

where no monadic atom occurs in A, © is solved and ©; = {S(z) | S(x) € © and = €
vars(S;(¢;))} for 1 < i < n. By construction all ©; are solved and the rule does not mod-
ify declarations. If the initial clause set V does not contain positive equations, then the sort
theory N’ obtained by a fix-point computation of the above reduction on N approximates
N in the desired way (see Definition 4.6). Second, the sort theory N' is approximated to a
sort theory N such that satisfiability of sort constraints in N’ gets decidable.

Of = S(f(tr,---,tn))
el’T(x) || —>S(f(317 .- -7577,))
O || =T(t:)

where ¢; is not a variable and forall 1 < j < n we define s; = x ift; = ¢; and s; = ¢;
otherwise. Furthermore, ©1 = {S(y) | S(y) € © and y € vars(S(f(s1,...,)))} and
O, is the restriction of © to atoms with argument = € vars(t;).

By construction, the derived clauses have a solved sort constraint and N approximates
N’ as desired. The sort theory N is shallow and satisfiability of sort constraints with
respect to shallow sort theories is decidable by the inference rules sort resolution, empty

SPASS VERSION 2.0 23

sort and the reduction rules sort simplification, subsumption deletion (Definition 4.16) and
condensation (Definition 4.17) [Jacquemard et al. 1998, Weidenbach 1999]. Hence, this
instance of static soft typing is effective.

So if we start with a clause store IV that does not contain positive equations, we con-
struct once the approximated sort theory N”. If this theory is not trivial, i.e., there is at
least one monadic predicate S with N [~ Va S(x), the sort theory N is stored and static
soft typing is applied to any input or derived clause. Since N is only approximated once,
typically at the beginning of the inference process, the rule is called static soft typing.
If in the input clause store all sort constraints are solved and there are no positive equa-
tions, static soft typing preserves completeness [Weidenbach 1996, Ganzinger, Meyer and
Weidenbach 1997].

If equations occur in a clause store a dynamic soft typing approach seems to be more
suitable. Consider Ganzinger et al. [1997] and Meyer [1999] for details. These techniques
are not implemented in SPASS Version 2.0 but are an option for later releases. Static soft
typing is activated by the ~-RRSST option.

4.3. Inference Rules

The introduced inference rules can be composed to a variety of (well-known) calculi. The
calculi range from the ordinary resolution calculus investigated in Section 3 to a super-
position calculus with selection, splitting and sort constraints that are subject to the ba-
sicness restriction. To cover all these cases, the rules defined here are given in generic
way such that each definition covers several variants of the rule. In particular, all rules are
available with a selection restriction of negative literals that does not destroy complete-
ness [Bachmair and Ganzinger 1994]. For any clause we can select some negative literals
with the effect that all inference rule applications taking this clause as a parent clause
must involve the selected literals. For example, if we select the literal R(z,y) in the clause
| R(z,y), f(g(z),y) ~ f(y,z) — then no equality resolution inference (see below) is
possible from this clause.

4.7. DEFINITION (Equality/Reflexivity Resolution). The inference

Ofl=rI'- A
O|T - A)o

z

where (i) o is the mgu of [and r, (ii) © is solved, (iii) [~ r is selected or (I ~ 7)o
is maximal in (© |1 ~ r»,' — A)o and no literal is selected in T is called an equality
resolution inference. If condition (iii) is replaced by [~ r is selected or no literal is selected
in T, the inference is called reflexivity resolution.

Equality resolution is activated by the - 1EQR option. Reflexivity resolution is activated
by the - 1ERR option.

24 CHRISTOPH WEIDENBACH

4.8. DEFINITION ((Ordered) Paramodulation/Superposition Left). The inferences

@1||].—‘1—>A1,l%7‘ @2|‘S[l/]p%t7l—‘2—>A2
(01,02 s[p/r] = t,T'1,Ty — Ay, Ag)o

z

and
01T - Ayl=xr B2 | A[l']p, T2 — As

(617 @2 || A[p/r]? Fla FQ - Ala AQ)O'

where (i) o is the mgu of I and [, (ii) I’ is not a variable, (iii) ©; and ©- are solved (iv) no
literal in T'y is selected, (v) s = ¢ (the atom A) is selected or no literal in I'; is selected,
is called a paramodulation left inference. If, in addition, ro 3 [lo the inference is an
ordered paramodulation left inference. If, in addition, lo ~ ro is reductive for (0, | T'; —
Aq,l = 1)o, (V) is replaced by so ~ to (the atom Ao) is selected or it is maximal in
(O2]|s = t,T9 — Ag)o (in (O2]| A,T's — Asz)o) and no literal in 'y is selected and
to ¥ so then the inference is called a superposition left inference.

7

Standard paramodulation is activated by the - 1SPm option. Ordered paramodulation is
activated by the —10Pm option. Superposition left is activated by the — 1 SpL option.

Note that no paramodulation/superposition inference is performed into the sort con-
straint. Hence, the sort constraint is subject to the basicness restriction. In case all sort
constraints of an initial clause store were solved, the basicness restriction preserves com-
pleteness.

4.9. DEFINITION ((Ordered) Paramodulation/Superposition Right). The inferences

01Ty — A l=r Oz || Ty — Ag,s[l'], = t

A
(01,02]| T1,T2 — Ay, Ag, s[p/r] = t)o

and ,
@1 ||F1—>A1, ~Tr @2 ||P2—>A2,A[l]p

(01,02 T1,T2 — Ay, Ay, Alp/r])o

where (i) o is the mgu of I’ and [, (ii) I’ is not a variable, (iii) ©; and © are solved (iv) no
literal in "y, 'z is selected is a paramodulation right inference. If, in addition, ro 3 lo the
inference is an ordered paramodulation right inference. If, in addition, o ~ ro is reductive
for (1|1 — A1,l = r)o, so ~ to (Ao) is reductive for (O3 [| Ty — Ag,s ~ t)o
(02]| T2 — Ag, A)o the inference is called a superposition right inference.

z

Superposition right is activated by the — 1SpR option.

In SpAss the parallel extensions of the above defined paramodulation/superposition
left/right inferences [Benanav 1990] are preferred. Whenever such an inference rule is
applicable, we don’t only replace the initially found occurrence of lo in the second clause
by ro, but all occurrences. On the ground level the parallel replacement corresponds to an
application of the inference rules exactly the way they are defined above plus exhaustive
application of non-unit rewriting with the left premise (Definition 4.21) on the conclusion.

Note that the ordering conditions of the above inference rules as well as the ordering
conditions of the inference rules defined below, are checked with respect to the found uni-
fier. This is called the a posteriori ordering check. For all inference rules that have ordering

SPASS VERSION 2.0 25

restrictions, SPASS first orders the clauses as they are and only searches for inferences
with respect to the found candidates (maximal literals, maximal sides of equations). This
is called the a priori ordering check. Then, after having found a second candidate clause
together with a unifier, the a posteriori check is evaluated. This second check is more ex-
pensive than the first, because it has to be dynamically computed with respect to any found
unifier. However, since most of the time in a saturation prover is spent with reduction (see
Section 3), the extra time for the a posteriori check does not matter, but needs some effort
for an (efficient) implementation.

The following example shows that the a posteriori check can in fact prevent the genera-
tion of extra clauses. Consider the two clauses

= fz,y) =~ f(y,x)
— P(f(a,b))

The equation f(z,y) =~ f(y,x) cannot be oriented by any reduction ordering. So with-
out an a posteriori ordering check, we can derive the clause — P(f(b,a)) by a super-
position right inference. Now consider the very same example where we use an RPOS
with precedence f > b > a and status(f) = left. This implies f(b,a) =,pos f(a,b)
and therefore the a posteriori ordering check for the potential superposition right inference
conclusion — P(f(b,a)) fails. No inference is possible between the above two clauses.

Next we define three factoring rules, namely (ordered) factoring, equality factoring and
merging paramodulation. The different rules are needed to obtain completeness results with
respect to different inference rule sets. For the standard resolution/paramodulation calcu-
lus [Robinson 1965, Robinson and Wos 1969, Chang and Lee 1973, Peterson 1983] the fac-
toring rule without ordering restrictions suffices for completeness. For the ordered resolu-
tion/superposition calculus, ordered factoring has to be combined with either equality fac-
toring or merging paramodulation to obtain completeness [Bachmair and Ganzinger 1994].

4.10. DEFINITION ((Ordered) Factoring). The inferences

@HF—>A,E1,E2

RGN

and
(—)HFaElaEQ — A

IOt 5 - M)

where (i) o is the mgu of £, and Es, (ii) © is solved (iii) (F1, E2 occur positively, E; is
maximal and no literal in T is selected) or (£, F» occur negatively, £ is maximal and
no literal in T is selected or F is selected) are called ordered factoring right and ordered
factoring left, respectively. If condition (iii) is replaced by (E1, E5 occur positively and
no literal in T" is selected) or (E1, E5 occur negatively, E; is selected or no literal in T is
selected) the inferences are called factoring right and factoring left, respectively.

Standard factoring is activated by the -1 SFc option. Ordered factoring is activated by
the —10Fc option.

26 CHRISTOPH WEIDENBACH

There is an overlap between Ordered Factoring defined above and Equality Factoring de-
fined below, because the rule ordered factoring also considers equations. We did so because
for the ordered paramodulation calculus with respect to our definitions Equality Factoring
is not needed for completeness. The rule Ordered Factoring suffices for completeness.

4.11. DEFINITION (Equality Factoring). The inference

OT = Ajl=nrl ~1

1 O, r~r - Al =)o
(; ,

where (i) o is the mgu of I” and [, (ii) ro % lo, (iii) © is solved, (iv) no literal in T is
selected, (v) lo ~ ro is a maximal occurrencein (© | T — A,l ~ r, I’ = r')o is called an
equality factoring inference.

Equality factoring is activated by the - IEqF option.

4.12. DEFINITION (Merging Paramodulation). The inference

@1 ||F1—>A1, ~Tr @2 ||F2—>A2,S%t[l/]p78/%t/

1 (@1,@2 ||F1,P2HAl,AQ,S%t[p/T],S%t/)U

where (i) o is the composition of the mgu 7 of [and I’ and the mgu X of s and 5’7, (ii) the
clause (©1 || Ty — Ay,l = r)o isreductive forlo = ro, (iii) ©1 and © are solved, (iv) no
literal in T'y, T’y is selected, (v) the clause (O2 || s — Ag,s = t,s' = t')o is reductive
for so ~ to, (vi) st = tr, (vii) I’ is not a variable is called a merging paramodulation
inference.

Merging paramodulation is activated by the — IMPm option.

4.13. DEFINITION ((Ordered) Resolution). The inference

O1||T1 — Ay, Ey O3 || B, Ty — Ay

A
(01,02||T1,T2 — Ay, Ag)o

where (i) o is the mgu of E; and E», (ii) ©; and O, are solved, (iii) no literal in Ty
is selected, (iv) Eyo is strictly maximal in (01 ||T';y — Ay, Ey)o, (v) the atom Eyo is
selected or it is maximal in (O || E2,T's — As)o and no literal in I's is selected is called
ordered resolution. If conditions (iv), (v) are replaced by E5 is selected or no literal is
selected in 'y, the inference is called resolution.

Standard resolution is activated by the - 1 SRe option. Ordered resolution is activated by
the —10Re option. If any of the options is set to 2, equations are also considered for the
inferences.

If, in Definition 4.13, one of the parent clauses of the inference is a unit, the inference
is called (ordered) unit resolution. The standard resolution rule is an instance of this rule if
we omit the conditions (ii)—(iv) and restrict our attention to non-equational atoms.

SPASS VERSION 2.0 27

4.14. DEFINITION ((Ordered) Hyper Resolution). The inference

7 OB, Bn—A 6 — AL B (1<i<n)
(0,01,...,0, | = AA1,...,Ap)o
(i) o is the simultaneous mgu of E1,...,E,, E},..., E/, (ii) © as well as all ©; are

solved, (iii) all Eo are strictly maximal in (0, || I; — A;, El)o is called an ordered
hyper resolution inference. If condition (iii) is dropped, the inference is called a hyper
resolution inference.

Standard hyper resolution is activated by the — 1SHy option. Ordered hyper resolution
is activated by the - 10Hy option.

In the application of the inference rule hyper resolution as well as the inference rules sort
resolution (Definition 4.3) and empty sort (Definition 4.4) more than two parent clauses
are involved, in general. So the search for candidate clauses gets more complicated. In
particular, an appropriate ordering of the literals E, .. ., E,, for searching partner clauses
can be indispensable for efficiency reasons. For example, if we search partners for the
literals P(z), Q(a, f(x)) it may be the case that we find thousand potential partners for
P(z) (all clauses with a positive (maximal) literal P(¢)) but only a few for Q(a, f(z))
(only clauses with a positive (maximal) literal Q(a, f(t)) or with variable occurrences at
the positions of a, f(t)). So starting with Q(a, f (z)) for partner search is the more efficient
way, since it will potentially provide instantiation of 2 when we subsequently search for
partners of P(x). So a good heuristic is to proceed at any time of the partner search with
the literals that has a maximal number of symbols with respect to the already established
partial unifier. Nevertheless, please note that the number of hyper resolvents grows in the
worst case exponentially in n.

4.4. Reduction Rules

Our philosophy is that reduction rules are at the heart of successful automated theorem
proving. The aim of reduction rules is to transform clauses (or even formulas see Chap-
ter V1) in simpler ones. So whereas inference rules are at the search side of automated

theorem proving, reduction rules are at the computation side.

4.15. DEFINITION (Duplicate/Trivial Literal Elimination). The reductions

R 0T —AEE
0T —AFE
and
R O|T,E,E— A
O|TE— A
and W A
I —
o O AA|

0,AT — A

28 CHRISTOPH WEIDENBACH

are called duplicate literal eliminations. The reductions

Ol t~t— A
R——8T==A
and |
t~s—
R =]

where for the final variant we assume that ¢ and s are unifiable, are called trivial literal
eliminations.

Duplicate/trivial literal elmination are both activated by the ~-RObv option.

Please recall that although trivial literal elimination can be simulated by equality resolu-
tion or factoring, for these inference rules to apply a clause must first be selected as Given
clause. Reduction rules like duplicate or trivial literal elimination apply to all (newly) gen-
erated clauses.

4.16. DEFINITION (Subsumption Deletion). The reduction

®1HF1—>A1 ®2|‘F2—>A2
O[T — Ay

R

where © || 'y — Ay is subsumed by O, || T’y — A, is called subsumption deletion.

Subsumption deletion is activated by the ~-RFSub and -RBSub option for forward and
backward subsumtion, respectively (see Section refsecfirstsimpprover).

Testing subsumption between two clauses is an NP-complete problem [Garey and
Johnson 1979]. Nevertheless, subsumption is indispensable for saturation based theorem
proving as we already discussed in Section 3. Hence, there exist a variety of papers
presenting algorithms that show a polynomial behavior on certain subclasses of clauses
(e.g., [Gottlob and Leitsch 1985]) or that introduce specific data structures to speed up
the subsumption test in practice (e.g., [Socher 1988, Tammet 1998]). Many of todays
provers use a variant of the Stillman [1973] algorithm for the subsumption test. Basi-
cally, the algorithm tries to find for every literal in ©, || Ty — A; a different instance
in ©, || T2 — A, such that all single instantiations are compatible, i.e., identical vari-
ables are mapped to identical terms. This simple version is not tractable in practice. Pre-
filters must be added to the algorithm that make it tractable in practice. In SPASS we in-
troduced two filters [Nonnengart et al. 1998]. The first filter is based on the size of the
clauses. A necessary condition for a subsumption deletion application over multisets is that
size(©1]| T1 — Aq) < size(O2]| T2 — As). Since the size of clauses is usually needed
for selection heuristics (see the discussion on the choose function in Section 3), the size
of a clause is already stored in a clause data structure and therefore this test is almost for
free. For every two clauses passing this test, the second prefilter checks whether for every
literal in ©1 ||T'; — A; there exists some instance literal in ©5 || Ty — A at all. So we
consider the literals in ©, ||’y — A; separately and don’t check compatibility between
the different substitutions. This check is again a necessary condition for the subsumption

SPASS VERSION 2.0 29

test to succeed and can be done in polynomial time. Clauses passing these two tests are
then subject to the Stillman algorithm. In practice, more than 95% of all subsumption tests
can already be rejected by the two filters.

Note that there is a subtle difference between multiset subsumption (considered here)
and set subsumption. The clause — Q(a, =), Q(y, b) subsumes the clause — Q(a, b) if we
consider clauses to be sets, but does not if we consider clauses to be multisets. Therefore,
in our version of the Stillman algorithm we require matched literals to be different.

When integrated into a prover, subsumption deletion is not an operation applied to two
clauses but applied to two sets of clauses or a clause and a set of clauses (see Table 1 and
Table 3). The former test can be reduced to the latter by considering the clauses in one set
separately. So it remains to test whether some clause C' subsumes some clause in a set N
or is subsumed by some clause in N. We already argued that the set V (in particular the Us
set) can become very large. Then it is in practice intractable to traverse all clauses in N and
then to apply the subsumption test to each clause. An additional filter is needed: Indexing.
Indexing is the data base technology of automated theorem proving. The crucial operations
provided by an index of a clause store IV are: compute all clauses that include an atom that
is an instance/a generalization/unifiable with some query atom. Typically, the result of such
a query consists of the clauses together with the found atom. So in order to test whether
some clause C'is subsumed by a clause in an indexed clause store N, one picks a literal
from C that has a low probability of being subsumed, searches the index for generalizations
of that literal and then tests C and the found clauses for subsumption. Since the query and
the result literal are already found, using appropriate data structures of SPASS it is sufficient
to test the clauses without these literals. We use a more general subsumption test with the
possibility to hide at least one literal in each clause and we are able to keep the bindings of
an indexing query result. This extended test is also needed for the reduction rules matching
replacement resolution (Definition 4.20) and non-unit rewriting (Definition 4.21).

4.17. DEFINITION (Condensation). The reduction

01| — Ay
9|2 — Aq

R

where O3 | T2 — Ay subsumes ©4 [Ty — Aj and ©2 || Ty — Ay is derived from
©1||T1 — A; by instantiation and (exhaustive) application of trivial literal elimination is
called condensation.

Condensation is activated by the ~-RCon option.

In the literature condensation is often defined on the basis of factoring applications.
From an implementation point of view the above definition is much sharper, because it
only suggests matchers to generate duplicate literals that can be eventually removed, not
unifiers as suggested by a definition based on factoring. All these candidate instantiation
substitutions can be effectively computed by subsequently searching for matchers o such
that F1o = E, for By, E5 € T'y (respectively for ©,, A;) and then testing whether
(01T \ {E2} — Ajp)o subsumes ©; ||’y — A;. This idea leads to a procedure that
is more efficient than the factoring based algorithm suggested by Joyner Jr. [1976] and
related to the techniques presented by Gottlob and Fermiller [1993].

30 CHRISTOPH WEIDENBACH

4.18. DEFINITION (Tautology Deletion). The reduction

» oT— A

where = © ||T" — A is called tautology deletion.

The above rule is sometimes also called semantic tautology deletion, since it is based on
a semantic tautology test. This test corresponds to testing unsatisfiability of a set of ground
literals. If we keep in mind that any literal can be coded as an (dis)equation, in order to
test unsatisfiability of a set of ground literals it is sufficient to test congruence closure with
respect to the positive equations. This can be done in polynomial time [Downey, Sethi and
Tarjan 1980]. There are certain weaker syntactic conditions that can be checked in linear
time:
O|T,FE—AE

R
or

R ©AID A4
or

R OID— At~

In SPASS the syntactic as well as the semantic check is implemented (see Appendix A).
For the semantic test we adopted the algorithm presented by Downey et al. [1980] to our
data structures. These conditions are implemented by nearly all todays theorem provers.
The semantic check requires appropriate data structures for an efficient implementation. It
is contained in the provers E, Saturate and SPASS.

Tautology deletion is activated by the ~-RTaut option. If the option is set to 1 only syn-
tactic tautologies are deleted and if the option is set to 2 also the semantic test is performed.

4.19. DEFINITION (Conflict). The reduction

®1HF1—>A1 en”FnHAn

R O

where ©41 ||’y — Aq,...,0, ||, — A, = Ois called conflict.

Even if n is fixed, the rule conflict is not effective, in general. It basically solves the
general unsatisfiability problem of first-order logic. The rule sort simplification is an ef-
fective instance of this rule. Two further effective instantiations of this rule that are not
related to specific theories are implemented in todays provers: unit conflict and the termi-
nator [Antoniou and Ohlbach 1983]. @ The former is the rule

| — Ex | B2 —

R O

8Hasta la vista baby!

SPASS VERSION 2.0 31

such that E4 and E, are unifiable. It seems that this rule is superfluous since it only detects
a contradiction between two unit clauses. However, since we consider unification between
E; and E», this rule cannot be simulated by, for example, matching replacement resolution
(see Definition 4.20), but only by a resolution step. In the context of problems where the
majority of generated clauses are units (e.g., unit equational problems or condensed de-
tachment problems [McCune and Wos 1992]) the probability that both clauses are selected
for inferences can become arbitrarily low. Then it can pay off to add this reduction rule that
implements a (global) one step search for the empty clause.

The terminator is a generalization of unit conflict and a restriction of the general conflict
rule to at most &k non-unit clauses out of the n clauses, k fixed. For some given, finite set
of clauses it is decidable whether we can derive the empty clause by resolution, if any
derivation is restricted to contain at most & non-unit clauses. This is easy to see, since there
are only finitely many different derivations using & non-unit clauses and resolving with a
unit clause strictly reduces the length of the resolvent compared to the maximal length of
one of its parent clauses. That’s the terminator. In practice the terminator can be useful
with values k£ < 3. Larger values rarely make sense, since the number of clauses that have
to be considered for this rule grows exponentially in & times the length of the non-unit
clauses. Note that if the terminator is applied to a Horn clause store without equality, it can
be turned into a complete refutation procedure by subsequently increasing 7.

As an exception from all other reduction rules, in practice the terminator is integrated
in the search procedure like an inference rule, not like a reduction rule. It is too expensive
to apply the terminator to all newly generated clauses and often it does not pay off. So the
terminator is solely applied to the selected Given clauses, if it is activated.

Unit conflict is activated by the ~-RUNC option. The terminator is activated by the -
RTer=<n> option, where n specifies the number of considered non-unit clauses.

4.20. DEFINITION (Matching Replacement Resolution). The reductions

O[T = AL, Er ©2]|T2, By — Ay

R
@1 H Fl — Al,El
@2 || FQ — AQ
and
R ©1|T1,E1 - A1 O3]y — Ay, Ey
@1 H FlaEl — Al
O3] T2 — As
and
R O1|IT1 — A, A1 O3, A2 || T2 — Ay

01| — Ay, Ay
9 ||T2 — Ag

where (i) Fio = E3 (Ajo = A, for the third variant), (ii) ©,0 C 05, I''o C T,
Aj0 C A, are called matching replacement resolutions.

32 CHRISTOPH WEIDENBACH

Matching replacement resolution is activated by the -RFMRR and -RBMRR option, for
the forward and backward direction, respectively.

Matching replacement resolution is a restricted variant of replacement resolution, itself a
restricted form of resolution where the conclusion must subsume one of its parent clauses.
For matching replacement resolution we restrict the unifier of the complementary literals
computed for replacement resolution to be a matcher. This speeds up the applicability test
significantly.

The third variant of the rule that applies to the sort constraint cannot be simulated by sort
simplification (Definition 4.5), because it also considers clauses that are not declarations.
On the other hand, matching replacement resolution can also not simulate sort simplifica-
tion. Consider the clauses

T(x),S5(f(2)),01 [T1— Ay
R(x) | —S(f(x))
T(x)| — R(x)
The negative occurrence of S(f(x)) in the first clause cannot be eliminated by matching
replacement resolution but by sort simplification.
4.21. DEFINITION (Non-Unit Rewriting). The reductions

O1|IT1 — A,s=t O, HF%E[S/]p — Ay

R
61 ||F1 —>A1,S;§5t
@2 || Pg,E[p/tO’] — Ag
and
R @1 ||F1—>A1,S%t @2|‘P2—>A2,E[Sl]p

61 ||F1 —>A1,S;§5t
O3 [| Ty — Ag, E[p/to]

where (i) so = &/, (ii) s = t, (iii) ©10 C O, '10 C T'y, A1o C A, are called non-unit
rewriting.

Non-unit rewriting and unit rewritung (see below) are activated by the -RFRew and
-RBRew option, for the forward and backward direction, respectively.

The ordering restrictions for non-unit rewriting are a priori ordering restrictions, i.e., we
do not compare the terms s and ¢ with respect to the found matcher . The ordering test with
respect to o is sharper, but an efficient implementation of this check is non-trivial because
it requires a tight connection between indexing, ordering computation and subsumption.
Therefore, SPASS uses the a priori ordering check, i.e., SPASS verifies s > t. See also the
discussion on page 24.

4.22. DEFINITION (Unit Rewriting). The reductions

| —s~t |Els),—

R

| —s~t

| Elp/to] —

SPASS VERSION 2.0 33

and

e st | =Bl

| —s~t

| — Elp/to]
where (i) so = ¢/, (ii) so = to, are called unit rewriting.

Unit rewriting is an instance of the second version of non-unit rewriting where all ©,,
T';, A; are empty. We mention it here explicitely, because it is the style of rewriting used
in purely equational completion, a theorem proving discipline of its own. Furthermore, the
a posteriori ordering check is much easier to implement, because we need no subsumption
check. Actually, it is implemented in SPASS.

In practice the rewriting reductions are among the most expensive reductions. Note that
any subterm of any clause has to be considered and that subsequent rewriting steps to the
same clause are common. Therefore, many provers don’t use the full power of non-unit
rewriting, but restrict the left clause to be a positive unit equation. They reduce non-unit
clauses by positive unit equations.

Even the a posteriori check, condition (ii), can be further refined. Consider an equation
where the left and right hand side don’t share any variables. Then the a posteriori check
will typically fail but may succeed by appropriate further instantiations. For example the
equation f(z,y) = g(z) cannot be oriented and hence the equation f(a,b) ~ a cannot be
rewritten by unit rewriting using the first equation. Now assume a RPOS with precedence
f > g > a > b. Then the equation f(a,b) = g(z) (the result of matching f(x,y) with
f(a, b)) can be turned into an oriented equation by instantiating z with @ or b. This enables
rewriting of f(a,b) to g(a) or g(b). In general it is sufficient to consider the minimal
constant and the crucial extra variables for further instantiation. Note also that the equation
f(z,y) = g(z) subsumes an equation like f(x,y) = g(y) that is oriented and can therefore
be used for rewriting in a straightforward way. This refinement is not implemented in
SPASS Version 2.0 but remains an option for further releases.

Another way to solve the problem of unorientable equations because of extra variables
is to split equations. Given some equation s = t where vars(s) € vars(t) and vars(t) €
vars(s), we introduce a new function symbol i where the arity of & is exactly |vars(s) N
vars(t)]. If {z1,...,2,} = wars(s) N vars(t) then the equation s ~ ¢ is replaced by
the equations s ~ h(z1,...,z,) and t ~ h(z1,...,z,). Given a KBO or RPOS and
a precedence where the new symbol A is smaller than the top symbols of s and ¢, both
introduced equations are oriented from left to right. In order to obtain a complete calculus
that includes splitting of equations splitting must not be applied infinitely many times.
Splitting equations is not implemented in SPASS Version 2.0.

4.23. DEFINITION (Contextual Rewriting). The reductions

O1||T1 — A,s=t Oy F27E[3/]p — Ay
01T — Ar,s~t
@2 || Pg,E[p/tO’] — Ag

R

34 CHRISTOPH WEIDENBACH

and
@1 || Fl — Al,S ~t @2 H FQ — AQ,E[S/]p

61 ||F1 —>A1,S;§5t
@2 || FQ — Ag,E[p/tO’]

R

where (i) so = ', (ii) s > ¢, (iii) s ~ ¢ is strictly maximal in ©1 [Ty — A, s =~ t,
(iv) forany termt' in©; || Ty — Ay, s =~ t, s = t/, (v) if E[s'], does not occur negatively,
so =~ to < E[s],, (Vi) = fred(©2 — S(t')) for all sort atoms S(t') € sortsimp(©10),
(vii) = fred(Te — E) for all atoms E € T'yo, (Viii) | fred(E — As) for all atoms
E € Ao are called contextual rewriting.

The expression sortsimp(©10) denotes the sort constraint © o after exhaustive applica-
tion of the rule sort simplification. The function fred, see Table 5, (recursively) applies the
reduction rules to the constructed subclauses before they are checked as tautologies. The
performance of fred, i.e. which rules are actually tested/applied, determines the strength
as well as the cost for testing and applying contectual rewriting. Our current idea is to
use all reduction rules except contextual rewriting. We do not test/apply contextual rewrit-
ing recursively. Contextual rewriting is not implemented in SPASs Version 2.0 but will be
included in the next release. We already have a prototype implementation of the rule.

The final reduction rule exploits particular equations of the form = = ¢ (called as-
signment equations), where = does not occur in ¢ nor in the rest of the clause. Negative
equations of this form can simply be removed from a clause. In order to remove positive
assignment equations the domain structure shared by any model of the current clause store
has to be examined. In particular, we exploit the case that the domain is non-trivial. There-
fore, before this rule can be applied, certain properties of any clause store model must be
checked. This can, e.g., be done by a sufficient criterion that can be tested syntactically.

4.24. DEFINITION (Assignment Equation Deletion). Let NV be the current clause store.
The reductions
Ollz~t,I - A

O —A

R

and
OT - z~t A

oT— A

R

where for both variations of the rule we assume (i) « & vars(t), (ii) € vars(© || T’ — A)
and for the second variant, where we remove a positive equation, we assume in addition
that |D| > 1 for any interpretation M with M = N, are called assignment equation
deletion.

Assignment equation deletion is activated by the -RAED option. If —-RAED is set to 1
only the first variant is applied, if set to 2 both variants are used.

For the elimination of the positive equation to be sound it is necessary to guarantee a
non-trivial domain for any model of the current clause store. A syntactic condition is the
existence of a clause || s ~ ¢ — where s and ¢ are arbitrary. If such a clause is contained

SPASS VERSION 2.0 35

in the clause store, the domain of any model is non-trivial and we can apply the second
variant of the rule.

4.5. Splitting

The effect of a splitting rule application is not only to extend the current clause store but
also to modify and extend the current clause store collection.

4.25. DEFINITION (Splitting). The inference

01,02 T, T2 — Ay, Ay

S
01Tt = A1 | O3]z — Ay

where vars(01 [|[T1 — Aj) Nwars(O2 || To — Ag) = D and Ay # 0, Ay # 0 is called
splitting.

Splitting is activated by the -Spl its=<n> option, where n specifies the overall num-
ber of splitting applications in a SpAss run. Unlimited application of the rule can be
achieved by choosing —1 for n.

Without the condition that the two split clauses must not share variables, Splitting is
very much like the 3-rule of free variable tableau. Since the clauses don’t share variables,
the two cases are completely independent and the derived clauses can be used for simpli-
fication/reduction without any restriction. For example, both clauses subsume the parent
clause. L L

In case the first split part is ground, i.e., vars(S(t) || E — E’) = 0, where S(t) =
Si(t1), ..., Sn(tn), E=E1,...,Epand E' = Ef,... ,Ejand 1 < i <n,1<j<m,
1 < k <, itis very useful to add the negation of the first split clause to the second part

S(t), @2 || F, FQ — F, AQ

O || Ta—Ay
soIz-w| | o
| —E;

I Ef.—

S

All these additional unit clauses can help a lot in reducing the clause set of the second
part (see matching replacement resolution, Definition 4.20 or non-unit rewriting, Defini-
tion 4.21). In a purely propositional setting, a calculus solely based on unit conflict (see
Definition 4.19) and extended splitting can polynomially simulate truth tables, whereas a
calculus based on unit conflict and the simple splitting rule cannot [D’Agostino 1992].

Of course, for any first part split clause we could add its negation to the second part.
However, in general this leads to the introduction of new Skolem constants, and in prac-
tice this tends to extend the search space for the second part. Note that in this case the
ground units resulting from the negated first part cannot be used for matching replacement
resolutions, because the introduced Skolem constants are new. As an alternative one could

36 CHRISTOPH WEIDENBACH

also record the ground instances of the variables in the first split clause used in the refuta-
tion of the first part and then add their negation as a disjunct to the second part. But it is
questionable whether such an effort pays off in practice.

Splitting itself often tends to generate a huge search tree, so additional refinements are
necessary. Therefore, we required that A; and A, are non-empty in Definition 4.25. So we
only split non-Horn clauses into clauses having strictly less positive literals. The rationale
behind this comes from the propositional level. For a set of propositional Horn clauses,
satisfiability can be decided in linear time [Dowling and Gallier 1984], whereas satisfia-
bility for arbitrary clauses is an NP-complete problem. The reduction rule matching re-
placement resolution (Definition 4.20) is also a decision procedure for propositional Horn
clauses (although it results in a quadratic time implementation). Hence, non-Horn splitting
and matching replacement resolution are a reasonable decision procedure for propositional
clauses. In case a clause can be split into a propositional part (no variables) and a non-
propositional one, it is very useful to split the clause that way and to add the negation of
the propositional part to the second as indicated before.

An alternative to an explicit case analysis is to split clauses by the introduction of new
propositional symbols. For example, the clause
S(@) || f(z) =y — Qz,2),Qa,)
can be replaced by the clauses
S@) || f(z) =y, A= Q(x, x)
I B—Q(a,2)
I — A, B
where A, B are new propositional symbols. The replacement preserves satisfiability of the
current clause store and if it is only applied finitely many often during a proof attempt
it also preserves completeness. If A, B are minimal in the ordering, no inference on A,
B will be performed as long as other literals are contained in the respective clauses. So
the different parts of the original clause don’t interfere as long as they are completely
resolved. This simulates splitting without the need to extend the notion of a clause store
to a collection of clause stores and hence a less complicated implementation. The second
advantage of this approach is that it does not introduce the inherent redundancy of an
explicit splitting approach. The main disadvantage of this splitting style is that none of the
generated clauses can be directly used for reductions, because the propositional variables
A, B must be new. This splitting style is available in the provers Saturate and Vampire,
explicit splitting (Definition 4.25) is available in SPASS.

5. Global Design Decisions
5.1. Main-Loop

The main-loop without splitting, Table 4, is a generalization of the main-loop introduced
in Section 3, Table 1.

Compared to the simple, resolution-based prover, all inferences are computed in the
extra function inf and (inter)reduction takes place in the function ired. In the automatic

SPASS VERSION 2.0 37

1 PROVER(N)

2 Wo:=10;

3 Us :=1ired(N,N);

4 While (Us#0Oand O ¢ Us) {

5 (Given, Us) := choose(Us);

6 Wo = Wo U {Given};

7 New := inf (Given, Wo);

8 (New, Wo, Us) :=ired(New, Wo, Us);

9 }
10 If (Us = () then print “Completion Found™;
11 If (O € Us) then print “Proof Found”;

Table 4: The Overall Loop without Splitting

mode of SPASS, the inference rules applied in inf are chosen after an analysis of the input
problem, such that the resultion calculus is sound and complete. For example, if the input
problem contains no equality, the superposition/paramodulation rules are not activated or
if the input problem is Horn, factoring rules are not needed. In Appendix A.1 we sum
up all SpAss options needed to (de)activate the inference/reduction rules introduced in
Section 4. Please note that a manual setting setting of inference/reduction rules can result
in an unsound or incomplete calculus. SPASS does not verify your manual settings.

The combination of the reduction rules gets more subtle compared to the combination
of subsumption/tautology deletion presented in Section 3. The function ired serves this
purpose, Table 6. Please recall that the terminator is integrated like an inference rule and
hence does not show up. First, line 4, any newly derived clause is forward reduced with
respect to the sets Wo and Us. The function fred is presented in detail in Table 5. The
ordering of the tested forward reductions is determined by potential dependencies between
the rules and by their respective implementation costs.

We don’t consider the lazy reduction approach introduced in Section 3, Table 3. It is a
bit tricky but not too difficult to develop it out of the presented full reduction algorithms.
Inside the algorithms a redundant clause is not always directly deleted, but represented by
the constant T.

In practice, tautology deletion (Table 5, line 2), elimination of trivial literals (line 4), con-
densation (line 5) and assignment equation deletion (line 6) are cheap operations, because
only the derived clause has to be considered for testing their applicability. This is not com-
pletely true for the assignment equation deletion (see Definition 4.24), but the suggested
syntactic domain size criterion can be tested once at the beginning of the search process,
so no extra effort is necessary. Clauses that pass these tests, are checked for forward sub-

38

CHRISTOPH WEIDENBACH

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 fred(Given, Wo, Us)

Given = taut(Given);

If (Given = T) then return(T);
Given = obv(Given);

Given = cond(Given);

Given := aed(Given, Wo, Us);
If (fsub(Given, Wo, Us)) then return(T);
(Hit, Given) := frew(Given, Wo, Us);
If (Hit) then {
Given = taut(Given)
If (Given = T) then return(T);
Given := obv(Given);
Given = cond(Given);
If (fsub(Given, Wo, Us)) then return(T);
}
Given := ssi(Given, Wo, Us);
Given = fmrr(Given, Wo, Us);
Given = unc(Given, Wo, Us);
Given := sst(Given, Wo, Us);
return(Given);

Table 5: Forward Reduction

SPASS VERSION 2.0 39

1 ired(New, Wo, Us)
2 While (New # 0) {
3 (Given, New) := choose(New);

4 Given = fred(Given, Wo, Us);

5 If (Given # T) then {

6 (New, Wo, Us) := bsub(Given, New, Wo, Us);
7 (New, Wo, Us) := bmrr(Given, New, Wo, Us);
8 (New, Wo, Us) := brew(Given, New, Wo, Us);
9 Us = Us U{Given};
10 }
11

12 return(@, Wo, Us);

Table 6: Interreduction

sumption with respectto Wo and Us (line 7) and for forward rewriting (line 8) where Hit
is set to true, if a rewriting step actually took place. If a rewriting step is performed, the
rules tautology deletion, elimination of duplicate/trivial literals, condensation and forward
subsumption are checked a second time (lines 10-14). Below is a simple example that
demonstrates dependencies between the different reduction rules.

1: —flx)~x
2: —a~b

3. P(f(x)) = P(x)

4 P(f(x)), P(b) —

S P(a), P(c) —

6 Plo(f(x), Plg(x) —

The clauses 3-6 are completely interreduced with respect to the reductions presented in
Section 4. Rewriting with clause 1 into clause 3 generates a syntactic tautology, rewriting
with clause 1 into clause 4 enables a further condensation step on clause 4 resulting in
4":P(b) — and rewriting clause 5 with clause 2 produces 5":P(b), P(c) — (assuming
a > b) that is forward subsumed by clause 4’. After rewriting with clause 1, duplicate
literal elimination can be applied to clause 6.

Finally the reductions sort simplification (line 16), forward clause reduction (line 17),
unit conflict (line 18) and static soft typing are tested. These reduction rules don’t enable
further applications of other rules, because they either strictly reduce the number of literals
or reduce the clause to T (static soft typing). In order to test the applicability of these rules
the overall clause stores Wo and Us must be considered.

40 CHRISTOPH WEIDENBACH

All clauses that pass forward reduction (Table 6, line 4) are used for back reduction
(lines 6-8) and are finally added to the Us set (line 9). Backward subsumption (line 6)
deletes all clauses from Wo and Us that are subsumed by Given. Backward matching
replacement resolution (line 7) tests all clauses in Wo and Us for matching replacement
resolution with Given. Reduced clauses are always deleted from their respective source
set and added to New. Back rewriting (line 8) behaves the same, but tests rewriting. The
clauses in New are not directly tested for all these reduction rules. They are tested after
having entered the Us set. This is motivated by efficiency issues which we will discuss
below.

The function choose (Table 6, line 3) selects a clause with the smallest number of sym-
bols. Small clauses have a higher probability to reduce other clauses. For example, a sub-
suming clause must have fewer symbols (consider the discussion after Definition 4.16) than
the clause it subsumes. For many other reductions like rewriting, selecting small clauses is
still a good heuristic because the size ordering of terms is often included in the reduction
ordering.

Note that a clause can be selected several times as Given clause in the while-loop of the
interreduction algorithm, if it is successfully reduced several times. Selecting small Given
clauses tries to minimize the number of such situations.

The main-loop presented in Table 7 extends the already discussed main-loop of Table 4
with splitting. Whether SpAss applies splitting or not depends on the input problem® and
can be controlled by the splitting option (see Appendix A.2). In case splitting is not applied,
executing the main-loop in Table 7 or Table 4 results in exactly the same behavior.

If splitting is possible (Table 7, line 10) it is preferred over all other inferences. The
rationale behind this decision is that a splitting application results in a strictly smaller
clause store collection. The exploration of the binary tree generated by the splitting rule
is performed by a standard depth-first, backtracking search (lines 7, 11, 12). Compared to
the SpAss Versions 1.0.x, Version 2.0 has a more sophisticated splitting clause selection.
It selects the clause with the highest unit reduction potential after the split.

All functions implementing inference/reduction operations have to be refined and must
also consider the split level of a clause. Initially, all clauses have split level zero and the
current split level is zero. Then any clause generated by a splitting inference gets the current
split level plus one as its split level and the current split level is incremented. Clauses
generated by all other inference/reduction rules get the maximal split level of their parent
clauses as their new split level. Backtracking resets the current split level to the split level
of the activated branch. But what happens if a clause C' is now subsumed by a clause D
with a greater split level? We must not delete C', but only remove it from the current clause
store, store it at D’s split level on the split stack and reinsert it if backtracking considers
that level. Clauses that are rewritten or reduced by clauses with a higher split level must be
copied and also kept appropriately on the split stack.

Basically that is all to integrate splitting into a saturation based prover. Nevertheless,
some refinements are possible. First, since all clauses have a split level, also the empty
clause has a split level. This level indicates where backtracking should start to consider
open branches and all branches at a higher split level can be discarded. For example, if we

95pass only splits non-Horn clauses, see Definition 4.25.

SPASS VERSION 2.0

1 PROVER(N)

2 Wo =0
3 Us = ired(N, N);
4 Stack = emptystack();
5 While (Us # 0 and (O ¢ Us or not stackempty(Stack)))
6 If (O € Us) then
7 (Stack, Wo, Us) := backtrack(Stack, Wo, Us);
8 else{
9 (Given, Us) := choose(Us);
10 If (splittable(Given)) then {
11 New := firstsplitcase(Given);
12 Stack := push(Stack, secondsplitcase(Given));
13 }
14 else {
15 Wo = Wo U {Given};
16 New = inf(Given, Wo);
17 }
18 (New, Wo, Us) := ired(New, Wo, Us);
19)
20 }

21 If (Us = () then print “Completion Found™;
22 If (O € Us) then print “Proof Found”;

{

Table 7: The Overall Loop with Splitting

41

42 CHRISTOPH WEIDENBACH

derive the empty clause at split level zero, then we can immediately stop and don’t have to
consider any further possibly open branches. Second, if we don’t only store the split level
with each clause but also a bit array with length of the split level, the following improve-
ment is possible. The bit array is updated together with the split level and indicates every
level that contributed to the clause. If we now derive an empty clause at some split level and
detect that it does not depend on some earlier levels above the previous backtracking level
that have open branches left, we can erase these levels, their split clauses and all clauses
depending on these. We call this operation branch condensation and it is indispensable to
make splitting feasible in practice. In the Al literature branch condensation it often referred
to as dependency directed backtracking.

In Section 3 we also introduced a main-loop with lazy reduction, Table 3. Although we did
not present it here, lazy reduction is also possible with the extended inference rule set and
it is not too difficult to think of lazy extensions of the main-loops according to Table 3.
Therefore, we omitted an extra presentation here.

5.2. Proof Documentation/Checking

By default, SPASS does not output a proof in case it derives the (final) empty clause nor
does SpAss provide a final saturated set of clauses, in case all possible inferences have
been performed without finding an empty clause. This can be changed by activating the
proof documentation option (see Appendix A.1).

Proof documentation is possible by implicitly or explicitly storing all clauses during
the overall search process that might contribute to a proof. As a consequence, a run with
proof documentation has a higher memory consumption and thus causes the prover to slow
down. This effect is further supported by splitting applications, where all clauses from
all significant branches must be kept as well. Therefore, in favor of execution speed, by
default SPAss does not output proofs (saturated clause stores). Nevertheless, SPASS can
handle proofs of several hundred thousand steps in reasonable time.

Automated proof checking is a very important topic in any theorem proving project.
The inference/reduction rules are non-trivial to (efficiently) implement, so there is a high
potential for bugs. This is also shown by several a posteriori disqualifications at the CASC
theorem proving competitions happened so far [Sutcliffe and Suttner 1999]. Proofs of au-
tomated theorem provers cannot be checked by hand in practice. So there is a need for
automated proof checking. Our solution is a separately implemented proof checker. The
checker takes a proof and starts with an analysis of the splitting rule applications. The
checker generates the binary tree resulting from subsequent splitting inference applica-
tions and tests whether all branches contain an empty clause, whether the split level as-
signments are done correctly and whether the splitting inference rule is applied in a sound
way. Then the checker generates for every inference/reduction rule application the corre-
sponding first-order theorem proving problem and provides it for a separate prover. The
single step proof problems can typically be easily solved if they are correct. This way, it
is possible to validate proofs up to several hundred thousand steps in reasonable time and
that completely automatically. As such a proof checker solely relies on logical implica-
tion, it supports most of today’s saturation-based inference systems and is robust against

SPASS VERSION 2.0 43

modifications to inference/reduction rules.

5.3. Data Structures and Algorithms

In Section 3 we discussed a simple prover based on resolution. In Section 5.1 we extended
this prover to cope with the inference/reduction rules of Spass. For our simple resolution-
based prover we already argued that

e the Us set grows very fast,

e reductions are indispensable to reduce the number of clauses in the Us set

e most of the time is spent with reductions.

The situation is getting even more dramatic if we consider the inference rules for equality
introduced in Section 4 and the suggested main-loops (Table 4, Table 7). For example, if
the selected Given clause C in the main-loop contains a positive equation, then any non-
variable subterm of any literal of a clause in Wo that unifies with the left or right hand side
of the equation generates a new clause by paramodulation. If the considered left hand side
is a variable then any subterm of any different clause unifies with the variable and produces
a new clause via paramodulation. An example for such a clause is one that forces a finite,
two element domain: — x ~ a, x = b. Ordering restrictions improve the situation (not for
the finite domain clause), but we nevertheless have to find reasonable ways to store large
Us sets and to efficiently find reduction/inference partners.

There are several solutions to these problems. We now focus on one solution and discuss
alternatives at the end of this section. The first design decision in SPASS is to store all atoms
in Wo, Us in a shared way, respectively. That means every occurrence of any subterm of
an atom in Us (Wo) exists exactly once and is shared by all superterms containing this
subterm. The idea is to save space and to keep indexing structures small. As all terms
are shared, any subterm is only submitted once to the indexing structure that provides
retrieval for inferences/reductions. This works fine for ground terms, but in general clauses
contain variables that are considered different if they occur in different clauses. Therefore,
almost nothing can be shared between two different non-ground clauses. The solution to
this problem is our second design decision that is to normalize variables of clauses. For
any clause, if the clause is considered from left to right as a sequence of its literals, the
variables are named with respect to their occurrence according to a fixed variable sequence.
After normalization there is a high probability that clauses with variables share non-ground
subterms. This is confirmed by experiments.

A consequence of this decision is that algorithms for unification/matching/generalization
have to keep track of this fact. For example, we have variants of the unification algorithm
that use two substitutions (which are called contexts inside the unification algorithm) in or-
der to store bindings between variables for two terms stemming from two different clauses
in an appropriate way.'0

Putting newly generated clauses into a sharing/indexing data structure is extra effort.
Since newly generated clauses have a high probability of being subsumed or reduced by al-
ready existing clauses, the New set (Table 4, 7, 6) is kept unshared. Furthermore, reductions

10gee the discussion in Section 3.

44 CHRISTOPH WEIDENBACH

are (by definition) destructive, so they can only be efficiently applied to unshared clauses.
Shared clauses have to be extracted/copied from the sharing structure before modification,
because destructive manipulation of shared terms may also effect other clauses where the
considered reduction is not permitted. So any forward reduction to the Given clause inside
the interreduction algorithm (Table 6) is done destructively, but before a back reduction
operation can actually be performed (lines 6-8) the clause has to be extracted/copied from
the Wo, Us sharing structure first. As it is unshared afterwards, it can be moved to the
New set. At line 9 of the ired function (Table 6), the Given clause is inserted into the
sharing/indexing structures of the Us set.

An alternative solution not implemented in SPASS is to completely abstract from variable
positions, e.g., by introducing one dummy variable for all occurring variables. We build
one or several atom/term trees that represent all atoms/terms without considering variables
to be different. These trees are then linked to the real atoms/terms and efficient algorithms
can be devised to search for candidate atoms/terms out of such skeleton trees. Atoms/terms
found this way are still candidates, because of the variable abstraction. They have then to
be verified by the appropriate matching/unification test. The so called discrimination trees
support such an approach.

If we resign from complete interreduction and focus on lazy reduction (see Table 3), no
reduction rule needs to be tested with respect to the Us set. So inserting the Us clauses into
an indexing structure for access is not needed. The Us clauses are only needed to provide a
pool from which the next Given clause is selected. To this end, we only need the necessary
information for the choose function and the clause itself. If the choose function relies on
size, the necessary information is simply a number. Since all Us clauses are children of
two Wo clauses, instead of storing the clause, we store the numbers of the parents and
the way it was generated represented by, say, one extra number. So, every clause in the
Us set can be represented by four numbers, in practice in constant space. This results in a
huge reduction of memory consumption and hence in an increase of execution speed. The
Waldmeister system (see Appendix C) can treat the Us set this way. Note that the extra
time needed to generate the Given clause can be neglected. In case a parent of a selected
Given clause is no longer in the Wo set, it must have become redundant, hence the Given
clause is redundant as well and needs not to be considered.

A further possibility to restrict the number of clauses in the Us set is to simply throw
away clauses. This may cause incompleteness of the theorem prover. Such techniques are
available in Fiesta, Otter, SPASS and Vampire, see Appendix C and the discussion in Sec-
tion 3.

Acknowledgments

Knowledge about the design of automated theorem provers is mostly distributed by dis-
cussions among the authors of such systems. | want to thank Bill McCune the author of
Otter that is the father system of all today’s “modern” automated saturation based theorem
provers. We learned a lot about the implementation of theorem provers by inspecting Otter.
My colleagues Arnim Buch, Thomas Hillenbrand, Bernd Ldchner, authors of Waldmeister,
Jorg Denzinger, author of Discount, Hans de Nivelle, author of Bliksem, Tanel Tammet,

SPASS VERSION 2.0 45

author of Gandalf, Stephan Schulz, author of E, Harald Ganzinger, author of Saturate, An-
drei Voronkov, co-author of VVampire, Robert Nieuwenhuis, author of Fiesta (and Saturate)
contributed a lot to this chapter.

As mentioned in the introduction the development of a competative theorem prover is a
challenging software project, exemplified in the following for the SPAss theorem prover:
Although there existed some preliminary versions of SPASS before 1994, the first version
called SpAss was started in that year and was finished in 1995 by Bernd Gaede in the
context of his diploma thesis. This version already relied on a library of data structures
we called EARL.' The library already contained indexing support and was developed by
Peter Graf and Christoph Meyer and myself. Clause normal form translation was added
to SPASS by Georg Rock as a diploma project. Further development of SPAsS took place
in paid student projects that typically lasted for several months each. Christian Cohrs in-
troduced splitting to SPASS, Enno Keen was responsible for inference rules and parsing
support, Thorsten Engel wrote our proof checker, Dalibor Topic significantly improved our
memory management module and contributed to the implementation of reduction rules and
Christian Theobalt wrote a whole bunch of documentation support scripts and mastered
the challenge to port SPASS to the Windows world. As a prerequisite he developed a neat
graphical user interface. Bijan Afshordel contributed to reductions on the formula level
and programmed the atom definition module, Uwe Brahm was indispensable for putting
SPASS on the Web and Christof Brinker added the most recent development, the detection
and deletion of non-syntactic tautologies. Thanks to all of them.

Finally, I’m indebted to Thomas Hillenbrand, Enno Keen, Andreas Nonnengart and An-
drei Voronkov for many comments on this chapter that lead to significant improvements.

Bibliography

ANTONIOU G. AND OHLBACH H. J. [1983], Terminator, in A. Bundy, ed., ‘Proceedings of 8th International
Joint Conference on Atrtificial Intelligence, 1JCAI-83’, pp. 916-919.

BAADER F. AND NIPKOW T. [1998], Term Rewriting and All That, Cambridge University Press.

BACHMAIR L. AND GANZINGER H. [1994], ‘Rewrite-based equational theorem proving with selection and
simplification’, Journal of Logic and Computation 4(3), 217-247. Revised version of Max-Planck-Institut
fur Informatik technical report, MPI1-1-91-208, 1991.

BACHMAIR L. AND GANZINGER H. [2001], Resolution theorem proving, in A. Robinson and A. Voronkov,
eds, ‘Handbook of Automated Reasoning’, Elsevier.

BACHMAIR L., GANZINGER H. AND WALDMANN U. [1993], Superposition with simplification as a decision
procedure for the monadic class with equality, in G. Gottlob, A. Leitsch and D. Mundici, eds, ‘Computational
Logic and Proof Theory, Third Kurt Gédel Colloquium’, Vol. 713 of LNCS, Springer, pp. 83-96.

BENANAV D. [1990], Simultaneous paramodulation, in M. E. Stickel, ed., ‘Proceedings of the 10th International
Conference on Automated Deduction’, Vol. 449 of LNAI, Springer, pp. 442-455.

CHANG C.-L.AND LEE R. C.-T.[1973], Symbolic Logic and Mechanical Theorem Proving, Computer Science
and Applied Mathematics, Academic Press.

CHARATONIK W., MCALLESTER D., NIWINSKI D., PODELSKI A. AND WALUKIEWICZ |. [1998], The horn
mu-calculus, in ‘Proceedings 13th IEEE Symposium on Logic in Computer Science, LICS’98’, IEEE Com-
puter Society Press, pp. 58-69.

11Efficient Automated Reasoning Library

46 CHRISTOPH WEIDENBACH

D’AGOSTINO M. [1992], ‘Are tableaux an improvement on truth-tables?’, Journal of Logic, Language and
Information 1, 235-252.

DAvis M. AND PUTNAM H. [1960], ‘A computing procedure for quantification theory’, Journal of the ACM
7,201-215.

DERsHOWITZ N. [1982], ‘Orderings for term-rewriting systems’, Theoretical Computer Science 17, 279-301.

DersHowITZz N. [1987], ‘Termination of rewriting’, Journal of Symbolic Computation 3(1), 69-115.

DOWLING W. F. AND GALLIER J. H. [1984], ‘Linear-time algorithms for testing the satisfiability of proposi-
tional horn formulae’, Journal of Logic Programming 1(3), 267-284.

DowNEY P. J., SETHI R. AND TARJAN R. E. [1980], “Variations on the common subexpression problem’,
Journal of the ACM 27(4), 758-771.

E1SINGER N. [1991], Completeness, Confluence, and Related Properties of Clause Graph Resolution, Research
Notes in Artificial Intelligence, Pitman Ltd., London.

FISCHER B., SCHUMANN J. AND SNELTING G. [1998], Deduction-based software component retrieval, in
W. Bibel and P. H. Schmitt, eds, ‘Automated Deduction - A Basis for Applications’, Vol. 3 of Applied Logic,
Kluwer, chapter 11, pp. 265-292.

FRUHWIRTH T., SHAPIRO E., VARDI M. Y. AND YARDENI E. [1991], Logic programs as types for logic
programs, in A. R. Meyer, ed., ‘Proceedings of the 6th Annual IEEE Symposium on Logic in Computer
Science, LICS’91’, IEEE Computer Society Press, pp. 300-309.

GANZINGERH., MEYER C. AND WEIDENBACH C. [1997], Soft typing for ordered resolution, in ‘Proceedings
of the 14th International Conference on Automated Deduction, CADE-14’, Vol. 1249 of LNAI, Springer,
Townsville, Australia, pp. 321-335.

GAREY M. R. AND JOHNSON D. S. [1979], Computers and intractability : A guide to the theory of NP-
completeness, Mathematical Sciences Series, Freeman, New York.

GOTTLOB G. AND FERMULLER C. G. [1993], ‘Removing redundancy from a clause’, Artificial Intelligence
61, 263-289.

GOTTLOB G. AND LEITSCH A. [1985], ‘On the efficiency of subsumption algorithms’, Journal of the ACM
32(2), 280-295.

GRAF P. [1996], Term Indexing, Vol. 1053 of LNAI, Springer.

HAHNLE R., KERBER M. AND WEIDENBACH C. [1996], Common syntax of the dfg-schwerpunktprogramm
“deduktion”, Interner Bericht 10/96, Universitat Karlsruhe, Fakultat fir Informatik, Germany. Current ver-
sion available from http://spass.mpi-sb.mpg.de/.

HEINTZE, N. AND CLARKE, E., EDS [1999], Workshop on Formal Methods and Security Protocols, Self Pub-
lishing, Trento, Italy.

HILLENBRAND T., JAEGER A. AND LOCHNER B. [1999], Waldmeister — improvements in performance and
ease of use, in H. Ganzinger, ed., ‘16th International Conference on Automated Deduction, CADE-16’,
LNAI, Springer, pp. 232-236.

HUSTADT U. AND SCHMIDT R. A. [1997], On evaluating decision procedures for modal logics, in ‘Proceed-
ings of 15th International Joint Conference on Artificial Intelligence, IJCAI-97’, pp. 202-207.

JACQUEMARD F., MEYER C. AND WEIDENBACH C. [1998], Unification in extensions of shallow equational
theories, in T. Nipkow, ed., ‘Rewriting Techniques and Applications, 9th International Conference, RTA-98’,
Vol. 1379 of LNCS, Springer, pp. 76-90.

JOYNER JR. W. H. [1976], ‘Resolution strategies as decision procedures’, Journal of the ACM 23(3), 398-417.

KAUTZ H. AND SELMAN B. [1996], Pushing the envelope: Planning, propositional logic and stochastic search,
in ‘Proceedings of the 13th National Conference on Al, AAAI'96’, Vol. 2, AAAI Press /| MIT Press,
pp. 1194-1201.

KNUTH D. E. AND BENDIX P. B. [1970], Simple word problems in universal algebras, in I. Leech, ed., ‘Com-
putational Problems in Abstract Algebra’, Pergamon Press, pp. 263-297.

MCcCUNE W. AND Wos L. [1992], Experiments in automated deduction with condensed detachment, in ‘11th
International Conference on Automated Deduction, CADE-11’, Vol. 607 of LNCS, Springer, pp. 209-223.

McCuUNE W. AND Wos L. [1997], ‘Otter’, Journal of Automated Reasoning 18(2), 211-220.

MEYER C. [1999], Soft Typing for Clausal Inference Systems, Dissertation, Technische Fakultét der Universitat
des Saarlandes, Saarbriicken, Germany.

SPASS VERSION 2.0 47

NIEUWENHUIS R. [1996], Basic paramodulation and decidable theories (extended abstract), in ‘Proceedings
11th IEEE Symposium on Logic in Computer Science, LICS’96°, IEEE Computer Society Press, pp. 473—
482.

NIEUWENHUIS R. AND RuBlO A. [2001], Paramodulation-based theorem proving, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Elsevier.

NIVELA P. AND NIEUWENHUIS R. [1993], Saturation of first-order (constrained) clauses with the Saturate
system, in C. Kirchner, ed., ‘Rewriting Techniques and Applications, 5th International Conference, RTA-
93’, Vol. 690 of Lecture Notes in Computer Science, LNCS, Springer, Montreal, Canada, pp. 436-440.

NONNENGART A., Rock G. AND WEIDENBACH C. [1998], On generating small clause normal forms, in
C. Kirchner and H. Kirchner, eds, ‘15th International Conference on Automated Deduction, CADE-15’, Vol.
1421 of LNAI, Springer, pp. 397-411.

NONNENGART A. AND WEIDENBACH C. [2001], Computing small clause normal forms, in A. Robinson and
A. Voronkov, eds, ‘Handbook of Automated Reasoning’, Vol. 1, Elsevier, chapter 6, pp. 335-367.

PETERSON G. E. [1983], ‘A technique for establishing completeness results in theorem proving with equality’,
SIAM Journal of Computation 12(1), 82-100.

Ri1AZANOV A. AND VORONKOV A. [1999], Vampire, in H. Ganzinger, ed., ‘16th International Conference on
Automated Deduction, CADE-16", Vol. 1632 of LNAI, Springer, pp. 292-296.

ROBINSON G. AND Wos L. [1969], Paramodulation and theorem-proving in first-order theories with equality,
in B. Meltzer and D. Michie, eds, ‘Machine Intelligence 4°, pp. 135-150.

RoBINSON J. A. [1965], ‘A machine-oriented logic based on the resolution principle’, Journal of the ACM
12(1), 23-41.

SCHMIDT-SCHAUSS M. [1988], ‘Implication of clauses is undecidable’, Theoretical Computer Science
59, 287-296.

ScHuULZ S. [1999], System abstract: E 0.3, in H. Ganzinger, ed., “16th International Conference on Automated
Deduction, CADE-16’, Vol. 1632 of LNAI, Springer, pp. 297-301.

SNYDER W. [1993], ‘On the complexity of recursive path orderings’, Information Processing Letters 46, 257—
262.

SOCHER R. [1988], A subsumption algorithm based on characteristic matrices, in E. Lusk and R. Overbeek, eds,
‘9th International Conference on Automated Deduction, CADE-9’, Vol. 310 of LNCS, Springer, pp. 573
581.

STILLMAN R. B. [1973], ‘The concept of weak substitution in theorem-proving’, Journal of the ACM
20(4), 648-667.

SUTCLIFFE G. AND SUTTNER C. B. [1998], “The tptp problem library — cnf release v1.2.1°, Journal of Auto-
mated Reasoning 21(2), 177-203.

SUTCLIFFE G. AND SUTTNER C. B. [1999], ‘The cade-15 atp system competition’, Journal of Automated
Reasoning 23(1), 1-23.

TAMMET T. [1998], Towards efficient subsumption, in C. Kirchner and H. Kirchner, eds, ‘15th International
Conference on Automated Deduction, CADE-15", Vol. 1421 of LNAI, Springer, pp. 427-441.

WEIDENBACH C. [1996], Computational Aspects of a First-Order Logic with Sorts, Dissertation, Technische
Fakultat der Universitdt des Saarlandes, Saarbriicken, Germany.

WEIDENBACH C. [1998], Sorted unification and tree automata, in W. Bibel and P. H. Schmitt, eds, ‘Automated
Deduction - A Basis for Applications’, Vol. 1 of Applied Logic, Kluwer, chapter 9, pp. 291-320.

WEIDENBACH C. [1999], Towards an automatic analysis of security protocols in first-order logic, in
H. Ganzinger, ed., ‘16th International Conference on Automated Deduction, CADE-16’, Vol. 1632 of LNAI,
Springer, pp. 378-382.

WEIDENBACH C., AFSHORDEL B., BRAHM U., COHRS C., ENGEL T., KEEN E., THEOBALT C. AND TOPIC
D. [1999], System description: Spass version 1.0.0, in H. Ganzinger, ed., “16th International Conference on
Automated Deduction, CADE-16", Vol. 1632 of LNAI, Springer, pp. 314-318.

Wos L., ROBINSON G. AND CARSON D. [1965], “‘Efficiency and completeness of the set of support strategy
in theorem proving’, Journal of the ACM 12(4), 536-541.

48 CHRISTOPH WEIDENBACH
Appendix
A. SpAss Version 2.0 Options

From a (unix) shell, Spass is called
SPASS [options] [<input-file>]

where options influence the behavior of the prover. Here, we only introduce SPASS
options that relate to the content of this chapter. Further options, e.g., options controlling
the output, are documented in the SPASS man-pages. The options discussed here apply to
SPASS Versions 2.0. Options can be set to integer values. For boolean options O means
falsity and 1 means truth. For example, the option - IMPm=1 enables the inference rule
merging paramodulation which can be abbreviated by - IMPm whereas - IMPm=0 disables
the inference rule.

A.1. Control
Auto Automatic Mode, after a problem analysis, all options are set automati-
cally.
Ful IRed Full Reduction, Section 3. If full reduction is enabled, the overall SPASS

loop corresponds to the loop presented in Table 1, if the option is dis-
abled, it corresponds to the lazy reduction loop presented in Table 3.

BoundMode Bound Mode selects the mode for resource controlled generation of the
search space, Section 3. If set to 1 clauses are weight restricted, if set to
2 clauses are depth restricted.

BoundStart Bound Start determines the start value for resource restriction, Sec-
tion 3.

BoundLoops Bound Loops determines the number of resource restricted main-loop
iterations.

DocProof activates proof documentation.

A.2. Inference Rules

I1SoR Sort Constraint Resolution, Definition 4.3.

1EmS Empty Sort, Definition 4.4.

1EQR Equality Resolution, Definition 4.7.

1ERR Reflexivity Resolution, Definition 4.7.

1SpL Superposition Left, Definition 4.8.

10Pm Ordered Paramodulation, Definition 4.8 and Definition 4.9.

1SPm (Standard) Paramodulation, Definition 4.8 and Definition 4.9.

I1SpR
10Fc
1SFc
1EqF
IMPm
I10Re
ISRe
10Hy
1SHy
Splits

SPASS VERSION 2.0 49

Superposition Right, Definition 4.9.

Ordered Factoring, Definition 4.10.
(Standard) Factoring, Definition 4.10.
Equality Factoring, Definition 4.11.

Merging Paramodulation, Definition 4.12.
Ordered Resolution, Definition 4.13.
(Standard) Resolution, Definition 4.13.
Ordered Hyper Resolution, Definition 4.14.
(Standard) Hyper Resolution, Definition 4.14.

Splitting, Definition 4.25. The option determines the number of split-
ting applications where any negative number means that splitting is not
restricted.

A.3. Reduction Rules

RSSi
RSST
RObv
RFSub
RBSub
RCon
RTaut

RUNC
RTer

RFMMR
RBMMR
RFRew
RBRew
RAED

Sort Simplification, Definition 4.5.

Static Soft Typing, Definition 4.6.

Trivial Literal Elimination, Definition 4.15.

Forward Subsumption Deletion, Definition 4.16, Table 5.
Backward Subsumption Deletion, Definition 4.16, Table 6.
Condensation, Definition 4.17.

Tautology Deletion, Definition 4.18. If the option is set to 1 only syn-
tactic tautologies are eliminated. If it is set to 2, semantic tautologies
are deleted as well.

Unit Conflict, Definition 4.19.

Terminator, Definition 4.19, where the value of the option determines
the number of non-unit clause occurrences in the searched refutation.

Forward Matching Replacement Resolution, Definition 4.20, Table 5.
Backward Matching Replacement Resolution, Definition 4.20, Table 6.
Forward Rewriting, Definition 4.21 and Definition 4.22, Table 5.
Backward Rewriting, Definition 4.21, Table 6.

Assignment Equation Deletion, Definition 4.24. If set to 2, it is assumed
that any model has a non-trivial domain and the corresponding elimina-
tions are performed.

50

CHRISTOPH WEIDENBACH

B. Pointersinto the SPASss Sour ce Code

The below tab
It is meant to

ular relates algorithms presented in this chapter to the actual source code.
provide a starting point to explore further details or to adapt the code to

personal desires. For every topic, we point to the SPASS source file and the name of the

corresponding

function.

Main-Loop, Table7 — top.c

— top_ProofSearch
fred, Table 5 — rules-red.c

— red_CompleteReductionOnDerivedClause
ired, Table 6 — rules-red.c

— red_CompleteReductionOnDerivedClauses
inf, Table 7 — rules-inf.c

— Inf_DerivableClauses

C. Linksto Saturation Based Provers

Bliksem

Discount

Fiesta

Gandalf

Otter

Saturate

by Hans de Nivelle
http://ww.mpi-sb.mpg.de/ nivelle/

by Jorg Denzinger

http://agent.informatik.uni-
kl.de/denzinge/denzinger._html

by Stephan Schulz [Schulz 1999]

http://wwjessen. informatik.tu-
muenchen.de/personen/schulz_html

by Robert Nieuwenhuis, Pilar Nivela and Guillem Godoy
http://www.Isi_upc.es/ roberto/

by Tanel Tammet

http://www.cs.chalmers.se/ tammet/gandalf/
by William McCune [McCune and Wos 1997]
http://www-unix.mcs.anl.gov/AR/otter/

by Harald Ganzinger, Robert Nieuwenhuis and Pilar
Nivela [Nivela and Nieuwenhuis 1993]
http://www.mpi-sb.mpg.de/SATURATE/

SPASS

Vampire

Waldmeister

SPASS VERSION 2.0

by Christoph Weidenbach, Bijan Afshordel, Enno Keen, Chris-
tian Theobalt, Dalinor Topi¢ [Weidenbach et al. 1999]
http://spass.mpi-sb.mpg.de/

by Alexandre Riazanov and Andrei Voronkov [Riazanov and
Voronkov 1999]
http://www.cs.man.ac.uk/fmethods/vampire/
by Arnim Buch, Thomas Hillenbrand, Roland Vogt, Bernd Léch-
ner and Andreas Jaeger [Hillenbrand, Jaeger and Lochner 1999]

http://agent. informatik.uni-
kl.de/waldmeister/

51

52 CHRISTOPH WEIDENBACH

Index

atom
maximal 7
strictly maximal 7

clause, 6
declaration 7
derived 12
Hornl 7
kept ... 12
reductive 7
store ... 8
store collection 8
unit ..o 5

declaration, 7

linear, 7
semi-linear 7
shallow 7
subsort ... 7
term ... 7
trivial ... 7
depth, 6
equation
maximal 7
strictly maximal 7
Horn
clause ...l 7
theory ..., 7
inference rules
(ordered) factoring 25
(ordered) hyper resolution 27
(ordered) paramodulation . .23, 24
(ordered) resolution 26
emptysort 21
equality factoring 26
equality resolution 23
merging paramodulation 26
reflexivity resolution 23
sort constraint resolution 20

splitting 35

superpositionleft 23
superpositionright 24
input reduction, 10

maximal, 7
monadic, 5
multiset, 5

occurrence
equation ...l 7
ordering
Knuth-Bendix 18
RPOS ... 19

precedence, 18

prover
bliksem 50
Discount 50
E 50
fiesta 50
gandalf 50
otterl 50
saturateL 50
SPASS e 51
waldmeister 51

reduction
ordering ...l 7

reduction rules
assignment equation deletion ..34

condensation 29
conflict 30
contextual rewriting 33

duplicate literal elimination ... 27
matching replacement resolution 31

non-unit rewriting 32
sort simplification 21
splitting 35
static softtyping 22
subsumption deletion 28
tautology deletion 30
trivial literal elimination 27

SPASS VERSION 2.0

unitrewriting 32
reductive, 7
renaming

variable 5

saturated, 8

size, 6

sort theory, 8
linear 0.l 8
semi-linear 8
shallow 8

strictly maximal, 7
substitution, 5
subsumption, 6

backward 12

forward 12
term

declaration 7

linear 7

semi-linear 7

shallow 7
theory

o 0] 1 1 1 7

53

